STUDIO: A FIRST STEP TOWARDS A STRATOMIC SPHERICAL BALLOON OBSERVATORY

SARAH BOUGUEROUA *1, PHILIPP MAIER 1, MAHSA TAHERAN 1, ANDREAS PAHLER 1, JÜRGEN WOLF 1, THOMAS KEILIG 1, ALFRED KRABBE 1, RENE DUFFARD 4, JOSE-LUIS ORTIZ 4, ANGEL COLIN 4, SABINE KLINKNER 1, MICHAEL LENGOWSKI 1, THOMAS MÜLLER 5, CHRISTIAN LOCKOWANDT 2, OLLE JANSON2, NORBERT KAPPELMANN 3, BEATE STELZER 3, KLAUS WERNER 3, CHRISTOPH KALKUHL 3, THOMAS RAUCH 3, THOMAS SCHANZ 3, JÜRGEN BARNSTEDT 3, LAURO CONTI 3, LARS HANKE 3

* sbougoueroua@irs.uni-stuttgart.de,
1 Institute of Space Systems, Stuttgart, Germany; 2 Swedish Space Corporation, Solna, Sweden; 3 Institute for Astronomy and Astrophysics Tübingen (IAAT), Tübingen, Germany; 4 Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain; 5 Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Introduction

For most astronomical measurements, observations in the ultraviolet (UV) at wavelengths below 320 nm are not possible from the ground because of atmospheric extinction by the atmosphere. Early on, observers started using stratospheric balloons as relatively flexible and affordable means to access ultraviolet wavelengths, thus overcoming most atmospheric limitations.[1]

STUDIO Mission

The STUDIO (Stratospheric Ultraviolet Demonstrator of an Imaging Observatory) mission consists of the development and construction of a versatile prototype gondola and telescope, which shall perform technology tests as well as deliver first scientific results from astronomical observations during its maiden flight planned for 2021. Its main optical payload includes a 50 cm aperture telescope to the back of which the Telescope Instruments Platform (TIP) will be attached. STUDIO is the prototype mission and the first objective of the research infrastructure project ESBO DS (European Stratospheric Balloon Observatory - Design Study).

Figure 1: STUDIO Telescope and TIP

The TIP will include a primary instrument for the UV to cover a scientific wavelength interval from 180 nm to 330 nm, as well as an instrument to cover a complementary optical spectrum up to 1000 nm.

The gondola will provide a stabilization system of 40 arcsec in elevation and azimuth, while a fine image stabilization system employing a fast steering mirror is foreseen to compensate for the remaining jitter and achieve the one arcsec pointing stability required by the UV instrument. For this purpose a Commercial Off-The-Shelf (COTS) tip/tilt platform will be used.

Figure 2: Mechanical Gondola Structure[1]

Scientific & Technical Motivation

Two science cases motivate the UV scientific part of STUDIO, namely:
- the search for variable hot compact stars in the Galactic plane, and
- the detection of flares from cool dwarf stars

Technically the prototype will aim to:
- Demonstrate the maturity of critical technologies (e.g. safe landing and recovery)
- Demonstrate a next-generation UV instrument on the prototype
- Ensure the availability of a prototype instrument for scientific use after the end of ESBO DS

Payload and Instruments

In addition to the 50 cm telescope, the scientific instruments on board the TIP are:

1. An advanced photon-counting, imaging microchannel plate (MCP) detector that will measure photons in the UV band from 180 nm to 330 nm. The detector will be capable of processing about 300 000 detected photons per second. The detector is currently being developed at the Institute for Astronomy and Astrophysics Tübingen (IAAT), Germany.[2]

2. A visible light imaging instrument that will mainly serve as the tracking sensor in a closed-loop fine image stabilization system, but that will also be used as an auxiliary science instrument. Several COTS cameras have been considered for the project, including the PCO pco.edge 4.2, which was tested in-laboratory for its optical characteristics, on-sky, and in thermal vacuum environment. The camera, which is not sold as being vacuum compatible, was subjected to accelerated qualification tests including temperature cycling from -30 °C to +34 °C and six pressure cycles down to 3 mbar, during which no problems were encountered.

Figure 3: STUDIO’s UV detector characteristic

Additionally, the TIP will house one filter wheel for each instrument carrying several Sloan & GALEX NUV filters as well as an open position, a beam splitter and a tip/tilt mirror and platform used for the image stabilization systems. Free slots are left on the gondola for potential add-on instruments.

Figure 4: PCO pco.edge 4.2 camera picture & characteristics[2]

Long Term Objectives

The second objective of ESBO DS is the development of a strategy for the establishment and operation of a balloon-based observatory - including the study of the technical feasibility of balloon flights with larger systems:
- For the mid-term: 1.5 m telescopes for visible and near infrared observations e.g., exoplanet atmospheres via transit spectroscopy
- For the long-term: 5 m aperture class telescopes for high spatial and spectral resolution at far infrared observations

Figure 5: Functional, environmental and on-sky tests of the pco.edge 4.2 camera

References