Water in Massive Protostars: a Comparison of 5 Sources

<u>Nick Indriolo (STScI)</u>, A. C. A. Boogert (IfA), C. N. DeWitt (SSI), A. Karska (MPIfR), E. J. Montiel (USRA), D. A. Neufeld (JHU), and M. J. Richter (U.C. Davis)

Outline

- Background
- Observations with SOFIA/EXES
- Data Analysis and Results
- Source Comparison
- Multi-wavelength interpretation
- Summary

Massive Protostars

- Luminous central objects (10⁴ L_{\odot})
- Deeply embedded within gaseous envelope
- High temperature chemistry
- Multiple kinematic components (envelope, disk, torus, jet, wind, outflow, infall)
- Drive large scale molecular outflows
- Caveat: sources are simultaneously similar, and yet significantly different. What you learn about one source may not be applicable to others

Protostar Properties

Source	Mass	Bol. Luminosity	Distance	Comments
	(M _☉)	$(10^4 L_{\odot})$	(kpc)	
AFGL 2136	45	10	2.2	disk
AFGL 2591	40	20	3.3	
MonR2 IRS 3	5-15 (×3)	1.3	0.78	triple
NGC 7538 IRS 1	30	20	2.7	
W3 IRS 5	20 (×2)	17	2.3	binary

Mon R2 IRS 3; Preibisch et al. 2003

NGC 7538 IRS1; Beuther et al. 2018

Image Gallery

AFGL 2591; Johnston et al. 2013

W3 IRS5; van der Tak et al. 2005

Chemical Models

Simple models predict roughly half of the oxygen in CO and half in H_2O in the inner envelope. H_2O transitions to ice in the outer envelope, while CO remains in the gas phase. (Doty et al. 2002)

H₂O Vibrational Modes

- v₁: symmetric stretch
 - 2.7 μm
- v₂: bend
 - 6.1 μm
- v₃: asymmetric stretch
 - **2.7 μm**

Atmospheric Transmission

ATRAN (Lord 1992) simulated atmospheric spectrum at 14,000 ft with 2.5 mm PWV

Transmission

Space-based Observations

Space-based Observations

Atmospheric Transmission

ATRAN (Lord 1992) simulated atmospheric spectrum at 43,000 ft with 0.01 mm PWV

Transmission

Stratospheric Observations

Example Spectra

Velocity Profiles

Heritage of SOFIA

Velocity Profiles

Velocity Profiles

- AFGL 2591, NGC 7538 IRS 1,
 Mon R2 IRS 3, and W3 IRS 5 all show blue-shifted "outflow" components
- AFGL 2136 absorption is more red-shifted with respect to systemic velocity
- No source shows any water in emission at IR wavelengths

H₂O Rotation Diagram

H₂O Rotation Diagram

Optical Depth Effects

- If absorbing gas is mixed with the emitting photosphere, then different transitions reach an optical depth of 1 at different physical depths
- The result is that weaker lines probe more material, making the stronger lines appear to be underpopulated
- By fitting only the data points derived from weak lines in the rotation diagram, we can better estimate the total H₂O column

H₂O Rotation Diagrams

H₂O Rotation Diagrams

Temperature and H₂O Columns

	N(H ₂ O) (10 ¹⁸ cm ⁻²)	<i>Т_{ех}</i> (К)	
AFGL 2136	6.07 ± 1.15	504 ± 17	
AFGL 2591	3.19 ± 1.18	640 ± 55	
MonR2 IRS 3	0.87 ± 0.53	447 ± 47	
NGC 7538 IRS 1	0.30 ± 0.21	503 ± 140	
W3 IRS 5	1.64 ± 0.58	546 ± 42	

Temperature and H₂O Columns

	N(H ₂ O) (10 ¹⁸ cm ⁻²)	<i>Т_{ех}</i> (К)	N(H ₂ O) (10 ¹⁸ cm ⁻²)	<i>Т_{ех}</i> (К)	Ref.
AFGL 2136	6.07 ± 1.15	504 ± 17	8.25 ± 0.95	502 ± 12	I-20
AFGL 2591	3.19 ± 1.18	640 ± 55		540 - 630	B-22
MonR2 IRS 3	0.87 ± 0.53	447 ± 47			
NGC 7538 IRS 1	0.30 ± 0.21	503 ± 140			
W3 IRS 5	1.64 ± 0.58	546 ± 42	5 - 36	500 - 600	L-23

I-20: Indriolo et al. 2020 B-22: Barr et al. 2022 L-23: Li et al. 2023

AFGL 2136

ALMA Observations

- 1.3 mm continuum shows disk-like or ring-like morphology (consider freefree contribution from central object)
- H₂O 5_{5,0}-6_{4,3} ν₂=1 (*E_u*=3461.9 K) emission shows a Keplerian disk
- R=120 AU; M=45 M_☉; Inc.=40° ± 5°

100

50

-50

-100

100

50

Declination Offset (mas)

(a)

Maud et al. 2019

0

ALMA Observations

Integrated intensity maps of H₂O emission lines

Integrated intensity maps of SO₂ and CH₃OH emission lines

26.365

26.275

H₂O Spectra

 IR H₂O absorption is reasonably well-matched to the 321 GHz emission profile

Toy Model of Disk Absorption

Heritage of SOFIA

Summary

- H_2O absorption (but not emission) at 6 μ m is clearly detected in our sample of massive protostars
- Optical depth effects complicate the analysis and interpretation of H₂O spectra
- Inferred rotation temperatures of 400-600 K indicate an origin close to the central source
- Profiles of the resolved absorption lines suggest contributions from disk and wind/outflow components
- Future ALMA observations may reveal the exact location where this hot water resides

Ancillary Slides

IR vs mm Continuum

ALMA 1.25 mm continuum

Avenhaus et al. 2018 ApJ 863, 44 VLT/SPHERE H band (~1.6 μm) scattered light

 Evidence for different structures seen in disks around low mass stars