

Is the concept of molecular clouds outdated?

Volker Ossenkopf-Okada, Nicola Schneider, Slawa Kabanovic, Cristian Guevara

KOSMA (Kölner Observatorium für SubMm Astronomie), I. Physikalisches Institut, Universität zu Köln

Volker Ossenkopf-Okada, KOSMA

The Concept of Molecular Clouds

Heritage of SOFIA

Stuttgart

1

Background

What is the question?

 The life cycle of matter in galaxies:

- How is the material assembled on the way to star formation?
- Observational problems:
 - Cold HI shone out by WNM
 - Molecular gas only visible when rich in CO

Credit: High Elevation Antarctic Telescope (HEAT) consortium, Steward Observatory, Radio Astronomy Laboratory

Heritage of SOFIA

What are molecular clouds? - Theory

The stationary picture

- Molecular clouds = dense blobs visible in CO:
- Chemical representation: PDR model (e.g. KOSMA-т) H^+, C^+ (based on Röllig & Ossenkopf-Okada 2022) H,C^+ H_2, C^+ CO - Layered structure ³CO

Quantitative description

• Layers in KOSMA-T PDR model (based on Röllig & Ossenkopf-Okada 2022)

- 0 < A_V < 0.25: H (CNM)
- 0.25 < A_V < 1: H_2 , no CO, mainly C⁺
- A_V > 1: CO

Problems:

- Clouds are not planar or spherical
 - increases fraction of outer layers: H⁺,
 H, CO-dark H₂ gas
- Timescales
 - Example: n = 300cm⁻³, A_{V,cloud} = 5 \rightarrow width = 10pc, v_{turb} = 5km/s
 - T_{chem,H_2} = 3Ma, $T_{chem,CO}$ = 2Ma, T_{chem,C^+} = 0.3Ma, T_{mix} = 2Ma
 - (e.g. Joshi et al. 2018)

4/25/24

- requires dynamical models

Volker Ossenkopf-Okada, KOSMA

Heritage of SOFIA

invisible in H and CO

The dynamic picture

•

Molecular cloud formation in simulations

• SILCC: Large fraction of the gas only visible in [CII]:

The dynamic picture

Molecular cloud formation in simulations

Quantitative analysis:

- The majority of the gas (peak of the density PDF) is invisible in CO
- Best traced by C⁺.
- [CII] emission is weak due to low temperature and density.

Common problem: large fraction of the gas is "hidden"

The stationary picture

The dynamic picture

• PDR model for χ=1, n=10³ cm⁻³: (based on Röllig & Ossenkopf-Okada 2022) Cloud formation in MHD simulations:

Observations

- SOFIA Legacy project FEEDBACK (PIs: N. Schneider, X. Tielens): → talk by S. Kabanovic
 - [CII] mapping around the DR21 ridge
 - 3 distinct velocity components

Average spectra in the central region (Bonne et al. 2022)

poster by S. Dannhauer

External radiation field (colors) and integrated [CII] intensity (contours) (Schneider et al. 2023, Nature Astronomy)

EDBA

A C+LEGP

Cygnus X observations

Molecular gas

Structure seen in CO spatially clearly assigned

• HV component that is only traced in [CII] not known so far

Zhang et al. 2024

HI gas or CO-dark H₂ gas?

Compare to HI

- HI shows a mixture of WNM emission and CNM absorption
 - HI Self Absorption (HISA) analysis for foreground

Problems

- Analysis always suffers from uncertain emission baseline
- Possible mixing with some WNM along the LOS

Volker Ossenkopf-Okada, KOSMA

The Concept of Molecular Clouds

Heritage of SOFIA

4/25/24

Li et al. (2023): FAST

observations

HISA (HI Self Absorption) analysis

FAST mapping:

- Column of HI:
 - **10²⁰ 3**×**10²⁰ cm**-² density ~ 20 cm⁻³
 - much lower than molecular gas, but more extended

But:

- Baseline uncertainty
- Excitation temperature basically unknown
- No reliable quantitative assessment of cold atomic gas from HISA possible
 - only lower limits

HI gas or CO-dark H₂ gas?

HI analysis

 Absorption towards DR21 continuum allows to much better constrain the foreground column of cold HI there (assuming T_{ex})

DRAO/CGPS data, resolution 1', Taylor et al. (2003)

4/25/24

Result

HI analysis:

- HI foreground well constrained:
 - -3.7×10^{21} cm⁻² for DR21 velocities
 - -2.0×10^{21} cm⁻² for W75N
 - 1.5×10^{21} cm⁻² for HV component
- Factor 10 above Li et al (2023) but less than CO bright gas (DR21 ridge: 15000 $M_{\odot})$

Schneider et al. (2023)

Compare to [CII] emission

- Gas is partially molecular:
 Molecular fraction: W75N: 23%
 HV component: 14%
 - Mass: W75N: 7800 M_{\odot} HV component: 9900 M_{\odot}
 - Falling towards DR21 ridge: accretion time: 1 Mio a
 - conversion $H \rightarrow H_2$: 10 Mio a

4/25/24

• n ~ 100 cm⁻³, T_{kin} ~ 100K, radiation field ~ 10G₀

The Concept of Molecular Clouds

Heritage of SOFIA

Is CO-dark gas always [CII] bright?

Collisional excitation

- No significant [CII] emission from
 - cool C⁺ [< 50K]
 - warm C⁺ at densities below 100 cm⁻²
- But traceable in absorption

Ossenkopf (2014), see also Goldsmith et al. (2012)

Stuttgart

Look for [CII]-dark, CO-dark gas

Gas < 50K only seen in absorption!

- Absorption dips of ground-state lines of [CII] and [OI] coincide:
 - Quantitative analysis requires knowledge of background emission 800
 - For [CII] possible if [¹³CII] was observed
 - For [OI], if 145µm line was observed
- Simplifying assumption:
 - Same material responsible for different fine-structure lines

Heritage of SOFIA

600

200

Guevara et al. (2020), Kabanovic et al. (2022):

Hot emitting layer Cold absorbing layer

Radiative transfer equations for multiple components distributed in two layers:

$$T_{\rm mb}(v) = \left\{ \mathcal{J}_{\nu}(T_{\rm ex,bg}) \left(1 - e^{-\sum_{i_{\rm bg}} \tau_{i_{\rm bg}}(v + \Delta v_{\nu})} \right) \right\}$$
$$\times e^{-\sum_{i_{\rm fg}} \tau_{i_{\rm fg}}(v + \Delta v_{\nu})} + \mathcal{J}_{\nu}(T_{\rm ex,fg}) \left(1 - e^{-\sum_{i_{\rm fg}} \tau_{i_{\rm fg}}(v + \Delta v_{\nu})} \right)$$

Foreground

The optical depth follows Gaussian profiles of emitters and absorbers

$$\tau(v) = \tau_0 e^{-4\ln 2 \left(\frac{v-v_0}{w}\right)^2}$$

Fitting results

Volker Ossenkopf-Okada, KOSMA

The Concept of Molecular Clouds

Heritage of SOFIA

Fitting results

Volker Ossenkopf-Okada, KOSMA

The Concept of Molecular Clouds

Heritage of SOFIA

Where is the carbon for the additional oxygen absorption?

Atomic carbon?

Favourable level structure

- Very constant emissivity at 492GHz
 - even for cold
 foreground
 gas

Volker Ossenkopf-Okada, KOSMA

Atomic carbon

Does it explain the missing carbon?

• No!

Volker Ossenkopf-Okada, KOSMA

4/25/24

Result

Thick cold foreground at 8km/s

- Common foreground for all pixels: N_H ~ 15 × 10²¹ cm⁻²
 - even higher by factor ~2 when oxygen absorption needed
- Background instead strongly variable from pixel to pixel
- Local foreground at -2km/s also strongly variable
- Practical problems in measurement:
 - [¹³CII] often affected by [CII] foreground absorption at other velocities
 - [OI] 145µm rarely observed

Alternatives

More complications

M17SW (Guevara et al. 2020, and subm.)

- Same type of [CII], [¹³CII] and [OI] 63µm and 145µm observations
 - Fit allowed for independent [OI] and [CII] foreground

- Foreground components vary by N(C⁺) ≈ 5×10¹⁷ cm⁻² corresponding to 4×10²¹ cm⁻² over 30"=0.28pc
- In isotropic case this indicates a density of 5000 cm⁻³!
 - Should be molecular

Volker Ossenkopf-Okada, KOSMA

The Concept of Molecular Clouds

Heritage of SOFIA

Stuttgart

27

More questions

 How much is the HI and H₂ gas mixed?

- How much WNM is mixed into the CNM?
- What are realistic geometries?
 - Streamers, collisions, ...?
- What is the mass accretion flow rate before and after the first SN goes off?
- Where is the C in gas seen in [OI] absorption but not in [CII] and [CI], CO emission or absorption?

Schematics of the overall cloud structure

Heritage of SOFIA

4/25/24

Summary

- Is the concept of Molecular Clouds outdated?
 - What we observe in molecular lines are just the "tips of the iceberg"
 - The mass reservoir for star-formation includes the whole iceberg
 - transitional gas: partially atomic, partially molecular
 - bright in [CII] when warm and dense, otherwise only visible in absorption
- Assessing the mass of this CO-dark molecular and cold atomic material is very difficult
 - Currently we have no way to measure the mass reservoir for star-formation

- CCAT may answer some questions
- For final answers we would need a new SOFIA

Volker Ossenkopf-Okada, KOSMA

The Concept of Molecular Clouds

Heritage of SOFIA

Stuttgart