# A Survey of Atomic Outflows from Massive Protostars

#### Phillip Oakey (University of Virginia)

Yao-Lun Yang (RIKEN), Jonathan Tan (Chalmers/UVA), Rubén Fedriani (Instituto de Astrofísica de Andalucía), Yichen Zhang (Shanghai Jiao Tong), Lianis Reyes-Rosa (University of Virginia)



Fedriani et al. (in preparation)

#### Introduction

- Massive (M<sub>\*</sub> > 8M<sub>□</sub>) protostars deeply embedded in dense molecular clouds with complex structures
- Outflows as a probe of massive star formation environments
- Handful of excellent outflow tracers in the far infrared ([Fe II], [OI], OH, H<sub>2</sub>O, CO)
  - Trace shocks, outflow-envelope interactions, photodissociation regions (PDRs)



Fedriani et al. (2019)

# **Core Accretion Model**

- Model for massive star formation
  - Suggests isolated core evolution
  - Scaled-up low-mass star formation

 Accretion along the main sequence towards the end of the protostellar stage



# **Highly Irradiated Outflows**

 Surge in ionization rate in late-stage massive protostars, developing PDRs in outflow

• High ionization rate is prediction of Core Accretion model



Tanaka et al. (2017)

# **Highly Irradiated Outflows**

• Post-processing of numerical MHD simulation from Staff et al. (2019)

• Synthetic line intensities that can be compared with observational data

Ionized regions nested within atomic and molecular regions



Obolentseva et al. (in preparation)

# **Previous Work on Atomic Outflows**

 Certain tracers are poorly represented in literature; few sources have [OI] emission mapped



Karska et al. (2014)

High-mass - Class 0 low-mass - Class 1 low-mass - intermediate-mass

# **SOMA Atomic Outflow Survey**

- PI Yao-Lun Yang (RIKEN)
- 17 sites of massive star formation sampled from the SOFIA Massive Star Formation Survey (SOMA)
  - Full presentation on Wednesday by SOMA PI Jonathan Tan
- SOFIA FIFI-LS observations in four bands — [OIII] 52 μm, [OI] 63 and 145 μm, CO 14-13 186 μm
- Complementary FIR data from SOFIA FORCAST, Herschel PACS, and Spitzer IRAC, used for constructing SEDs



Oakey et al. (in preparation)

#### **Objectives**

- Categorize outflow morphology
- Measure total line flux and compare with intrinsic protostellar properties
  - [OI] flux should trace both accretion and mass loss rate, also UV radiation (PDRs)
- Calculate CO/[OI] line flux ratios
- Comparison with PDR and shock models

# Data - Continuum

- Spectral cubes with ranges ~ ± 500-1000 km s<sup>-1</sup>, spectral resolution ~ 200-300 km s<sup>-1</sup>
- Simultaneous LW/SW channel observations through dichroic, SW images have smaller FOV
- Astrometric correction performed upon LW continuum image, mapped to Herschel 160 µm peak
  - Color gradient measured



#### **Color Gradient**



- Core Accretion predicts alignment of blue-shifted outflow cavity with short-wavelength peak
- Outflow P.A. from CO observations (Rodriguez et al. 1980, 1994)

#### **Color Gradient**





## **SED Improvement**

- FIFI-LS data added to SOMA IV spectral energy distribution (SED) fits
- 3 sources lack LW Herschel data and are better constrained with FIFI-LS data



#### **Outflows**



- Strong 145 µm [OI] and CO emission are most usual outflow indicators from our survey
- 63 µm [OI] contaminated by absorption



**Cepheus A** 

NGC 7538 IRS 9

IRAS 07299-1651

# Line Flux

- Strong correlation in all bands except [OI] 63 µm, which is tainted by absorption
- This is expected if oxygen traces mass loss, accretion, and UV flux



# Line Flux

• Models predict  $\alpha \sim 0.81$ , observations show  $\alpha = 0.86$ 



Obolentseva et al. (in preparation)

# Line Flux

- Strong correlation in all bands except [OI] 63 µm, which is tainted by absorption
- This is expected if oxygen traces mass loss, accretion, and UV flux



# CO/[OI] Ratios

- Will be applying these to shock and **PDR** models
- Wide range of values, diverse survey of environments : Denotes





## Summary

- Successfully mapped 17 massive star forming regions in [OI], [OIII], and CO, detected [OI] in all sources, [OIII] in very few, and generally CO is detected
- Improved SED constraints, better models for protostellar characteristics
- Measured color gradients, find weak or non-existent correlation with outflow axes
- Detected at least six outflows, with potential others
- Correlated intrinsic luminosity with integrated line emission in almost every band
  - Observed a range of CO to [OI] ratios, indicating transitions from molecular- to atomic-dominated outflows

#### **Future**

- Compare with shock models
- Apply CO/[OI] ratios

- Investigate kinematic features in the spectra
- Establish an evolutionary sequence for atomic outflows





#### **Astrometric Correction**



#### **Color Gradients**

|                     |                  | 2015 V.101    |                                    |                   |               |                   |         |
|---------------------|------------------|---------------|------------------------------------|-------------------|---------------|-------------------|---------|
|                     | Offset [arcsec]  |               | Position Angle [deg]               |                   | Average       |                   | Outflow |
| Source              | $145~\mu{\rm m}$ | $186 \ \mu m$ | $145~\mu{\rm m}$                   | $186~\mu{ m m}$   | Offset        | P.A.              | P.A.    |
| $G045.47 {+} 00.05$ | $1.0\pm0.4$      | $3.1\pm0.7$   | $\textbf{-23.3} \pm \textbf{23.4}$ | $161.8\pm12.9$    | $2.1\pm0.8$   | $69.2\pm26.8$     | 5       |
| IRAS 07299-1651     | $2.2\pm0.2$      | $4.6\pm0.4$   | $119.7\pm5.1$                      | $171.0\pm4.6$     | $3.4\pm0.5$   | $145.3\pm6.8$     |         |
| AFGL 437            | $4.0\pm0.7$      | $4.6 \pm 1.0$ | $-59.4\pm7.9$                      | $-81.1\pm9.4$     | $4.3 \pm 1.2$ | $-70.3 \pm 12.3$  | -175    |
| IRAS 20126+4104     | $1.6 \pm 0.3$    | $3.4\pm0.8$   | $35.0\pm8.5$                       | $50.8\pm14.0$     | $2.5\pm0.9$   | $42.9 \pm 16.4$   | 115     |
| G030.59-00.04       | $1.6\pm0.8$      | $2.0\pm0.7$   | $-26.8\pm29.4$                     | $-70.6 \pm 19.5$  | $1.8 \pm 1.1$ | $-48.7\pm35.3$    |         |
| Sh2-235             |                  |               |                                    |                   |               |                   |         |
| G040.62-00.14       | $0.6\pm0.2$      | $1.8\pm0.3$   | $-58.5\pm15.9$                     | $171.5 \pm 11.5$  | $1.2\pm0.4$   | $56.5\pm19.6$     |         |
| AFGL 4029           | $2.4\pm0.5$      | $5.9 \pm 1.5$ | $170.0\pm11.2$                     | $-155.6\pm12.5$   | $4.1 \pm 1.6$ | $7.2 \pm 16.8$    | -95     |
| G309.92 + 0.48      | $1.2\pm0.1$      | $2.2\pm0.2$   | $-81.8\pm5.0$                      | $-119.4\pm4.8$    | $1.7\pm0.2$   | $-100.6\pm6.9$    | ····    |
| AFGL 2591           | $1.0\pm0.2$      |               | $-25.6\pm11.2$                     |                   | $1.0\pm0.2$   | $-25.6 \pm 11.2$  | -100    |
| Cep A               | $6.7\pm0.3$      | $8.0\pm0.3$   | $38.3\pm2.4$                       | $38.1\pm2.0$      | $7.3\pm0.4$   | $38.2\pm3.2$      | 50      |
| AFGL 5180           | •••              |               |                                    |                   |               |                   | 90      |
| IRAS $22198 + 6336$ | $12.3\pm1.4$     | $0.1\pm1.0$   | $-93.4\pm4.0$                      | $-72.7 \pm 483.7$ | $6.2 \pm 1.7$ | $-83.0 \pm 483.7$ | -133    |
| NGC 7538 IRS 9      | $2.0\pm0.2$      | $2.9\pm0.3$   | $-71.2\pm4.2$                      | $-83.8\pm5.2$     | $2.5\pm0.3$   | $-77.5\pm6.7$     | -95     |
| G011.94-00.62       | $1.0\pm0.3$      | $2.7\pm0.3$   | $-69.4 \pm 14.9$                   | $-127.5\pm6.6$    | $1.9\pm0.4$   | $-98.5\pm16.3$    | -128    |
| G049.27-00.34       | $1.9\pm0.7$      | $1.6 \pm 1.5$ | $-35.3\pm19.5$                     | $-114.9\pm50.0$   | $1.8 \pm 1.6$ | $-75.1 \pm 53.7$  |         |
| W3 IRS 5            | $4.4\pm0.3$      | $4.5\pm0.3$   | $82.5\pm4.5$                       | $104.0\pm4.4$     | $4.4 \pm 0.5$ | $93.2\pm 6.3$     | 38      |

Weak association, but does not account for angle of outflow or uncertainty in outflow P.A.

#### SED Modelling (Average of Top 20 Fits)



SOMA IV values

SOMA IV + FIFI-LS values