

Non-metastable ammonia masers in the high-mass star-forming regions

Y. T. Yan (闫耀庭)¹, C. Henkel^{1,2}, K. M. Menten¹, T. L. Wilson¹, A. Wootten³, A. Brunthaler¹, F. Wyrowski¹, and Y. Gong¹ ¹ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany ² Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 830011 Urumqi, PR China ³ National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA

Physics of the ammonia molecule

Symmetric top with inversion

- ➤ Two principal quantum numbers (J, K). J is the total angular momentum quantum number, K is the projection of J onto the NH₃ symmetry axis.
 ➤ Non-metastable (J > K), decay rapidly (10-10² s)
 ➤ Metastable (J = K), decay much slower (10⁹ s)
 ➤ Ortho-NH₃ (K = 3n), all H spins parallel
 ➤ Para-NH₃ (K ≠ 3n), all H spins not parallel

The inversion of the ammonia molecule.

Thermally excited transitions in the centimeter-wavelength inversion transitions of ammonia are regarded as a reliable thermometer of molecular clouds (Walmsley & Ungerechts+1983).

Discovery of masers/lasers

The first maser was obtained from a source of ammonia by **Charles H**. **Townes** and his group in the laboratory in 1954 (Gordon+1954). He then received the Nobel Prize in Physics in 1964. The figure was taken from Charles H. Townes's Nobel Lecture.

Maser: Microwave Amplification by Stimulated Emission of Radiation.

Molecular maser lines are signposts of high-mass star formation, probing the excitation and kinematics of very compact regions in the close environment of young stellar objects and providing useful targets for trigonometric parallax measurements.

Detections of NH₃ maser sources in the interstellar medium (ISM)

Our detections of NH₃ maser sources

NH, (9,6)

Comparison of velocities and line widths of ammonia maser lines to the intrinsic line widths of ammonia (J, K) = (1,1) thermal emission. $\delta V = V_{LSR}(maser) - V_{LSR}(NH3(1,1))$ $\delta Width = \Delta V_{1/2}(NH3(1,1)) - \Delta V_{1/2}(maser)$

Spectra from 14 newly detected nonmetastable ammonia maser sources, based on our recent K-band line survey with the 100-meter Effelsberg telescope (Yan+2024). The systemic velocities from NH_3 (1,1) emission are indicated by dashed red lines.

30

Higher-angular-resolution observations of non-metastable NH₃ masers in Sgr B2(N)

The Karl G. Jansky Very Large Array (JVLA) Credit: Bettymaya Foott, NRAO/AUI/NSF

Velocity offsets with respect to systemic velocities may suggest emission associated with outflows or disks.

 δV (km s⁻¹)

Considerations on pumping scenarios

The metastable NH₃ (3,3) masers are thought to be collisionally pumped (e.g., Walmsley & Ungerechts+1983, Mangum & Wootten+1994). Pumping scenarios of other NH₃ transitions are still speculative.

Three main pumping scenarios (Madden+1986, Brown & Cragg+1991, Henkel+2013): 1.collisional pumping: measurements of collisional rates of ammonia are needed (J > 6) 2.infrared radiation at 10 µm from the dust continuum, can cause significant populations of vibrationally excited NH₃

3.line overlap between the rotational NH₃ transitions in the far-infrared band

In view of the masers' velocity

differences with respect to adjacent hot molecular cores and/or UCHII regions, it is argued that all the measured ammonia maser lines may be associated with shocks caused either by outflows or by the expansion of UCHII regions (Yan+2022b).

NH₃ maser spectra in Sgr B2(N). The dashed red lines indicate the systemic velocities of the associated hot cores.

References:

Brown, R. D., & Cragg, D. M. 1991, ApJ, 378, 445
Gordon, J. P., Zeiger, H. J., & Townes, C. H. 1954, Phys. Rev., 95, 282
Madden, S. C., Irvine, W. M., Matthews, H. E., et al. 1986, ApJ, 300, L79
Rocha, W. R. M., van Dishoeck, E. F., Ressler, M. E., et al. 2024, A&A, 683, A124
Wilson, T. L., Batrla, W., & Pauls, T. A. 1982, A&A, 110, L20
Yan, Y. T., Henkel, C., Menten, K. M., et al. 2022b, A&A, 666, L15
Yan, Y. T., Henkel, C., Menten, K. M., et al. 2024, accepted for publication in A&A, arXiv:2403.18001

Cheung, A. C., Rank, D. M., Townes, C. H., et al. 1968, Phys. Rev. Lett., 21, 1701 Henkel, C., Wilson, T. L., Asiri, H., & Mauersberger, R. 2013, A&A, 549, A90 Mangum, J. G. & Wootten, A. 1994, ApJ, 428, L33 Walmsley, C. M. & Ungerechts, H. 1983, A&A, 122, 164 Yan, Y. T., Henkel, C., Menten, K. M., et al. 2022a, A&A, 659, A5

Welcome to Yaoting Yan's homepage