Heritage of SOFIA – Scientific Highlights and Future Perspectives, 24 April 2024

MAGNETIC FIELDS IN THE DENSE ISM: A NEED FOR IR POLARIMETRY

Thushara G.S. Pillai MIT Haystack Observatory

OUTLINE

- Why would B-Fields Matter for Star Formation?
- What are the observed trends in nearby clouds?
- New insights from SOFIA/HAWC+

How can we probe magnetic fields: Techniques Relevant for IR Polarimetry

B-FIELDS MAY SUPPRESS FRAGMENTATION

Initial magnetic

field

orientation

350

Hull et al. 2017

Relative role of magnetic fields => "magnetic field plays a role in dictating the formation of the source structure"

B-FIELDS MAY REDUCE SF EFFICIENCY

Wu et al. 2020

=> magnetic fields can reduce star-formation rate

(see also Myers et al. 2014, Federath 2015, Wurster 2019)

B-FIELDS IMPACT DENSITY RELATIONS

Mocz et al. 2020

DENSITY SHIFTS B-FIELD-CLOUD ALIGNMENT

Chen et al. 2016 =>

relation between cloud and B-field orientation has a density dependence. The transition density at which field changes from parallel to perpendicular depends on the Bfield strength.

IMPACT OF B-FIELDS IN NUCLEAR RINGS

=> "large-scale magnetic fields tend to suppress star formation in nuclear rings."

Moon et al. 2023

3D magnetic field structure in model B100 at t = 250 Myr

=> "Magnetic fields play a non-negligible dynamical role"

Tress et al. 2024

ISM Magnetic Fields

Crutcher et al. 2012

"no definitive evidence for magnetic fields dominating gravity in molecular clouds"

Pattle et al. 2023, Liu et al. 2022b

SOFIA/HAWC+ IN CONTEXT

HAWC+ EARLY RESULTS

Log Radial Offset [arcsec]

Clemens et al. 2018, GF-9

RELATIVE ALIGNMENT IN CLOUDS

Santos et al. 2019, Lee et al. 2021

TRANSFORMATIONAL SCIENCE WITH HAWC+

MULTI-WAVELENGTH POLARIMETRY

•Longer Wavelengths (154 & 214 μ m) reveals gravity dominated hour-glass structures

•Short Wavelengths (53 & 89 $\,\mu{\rm m}$) reveal feedback effects

Chuss et al. 2019

MASS-TO-MAGNETIC FLUX RATIO DISTRIBUTION

Ngoc et al. 2023 in IRDC G11

Guerra et al. 2021 in OMC1

Can distinguish sub-critical from super-critical regions within a cloud

B-FIELD IN A CLUSTER FORMING FILAMENT

column density distribution reveals 3 filaments merge onto one hub

Pillai et al. 2020

B-FIELD MORPHOLOGY TRANSITIONS

background field perpendicular to this filament, while field in filament is parallel to filament

=> field dragged along by gravitational flow at high density

high density Pillai et al. 2020

DUST POLARIZATION PHYSICS - POLARIS

Modeling HAWC+ Observations reveal that internal radiation from protoclusters can keep dust grains aligned deep into cores (Pillai, Clemens, Reissl et al. 2020)

Observed Fractional Polarization Distribution

Simulated Polarized Dust Emission

HAWC+ MW LEGACY SURVEYS

SIMPLIFI: HAWC+ SURVEY OF NEARBY CLOUDS

PI: Thushara G.S. Pillai

Study of Interstellar Magnetic Polarization: A Legacy Investigation of Filaments (SIMPLIFI)

Resolves (≤ 0.1 pc) observations of representative filamentary clouds and cores that captures both the larger cloud scale as well as clump scale magnetic field structure

Nearby filamentary molecular clouds: => clouds with m/l from ~10 to $>10^{3} M_{\odot}/pc$ ==> Quiescent and Star-Forming filaments

SIMPLIFI Project on SOFIA

Heyer et al., Pillai et al., Kumar et al. in prep.

DR2 | SIMPLIFI

Cygnus X observed by HOBYS Project on Herschel

FIELDMAPS: HAWC+ SURVEY OF GALACTIC BONES PI: Ian Stephens

GALACTIC BONES

Goodman et al. 2014

"Bones" – Goodman+2014, Zucker+ 2015

- Largely contiguous in the mid-IR
- Parallel to Galactic plane within 30 degrees
- Within 20 pc of the physical mid-plane
- Within 10 km/s of spiral arm velocity
- Coherent velocity structure
- Large aspect ratio (greater than 50:1)

G47 RESULTS

Magnetic criticality according to DCF measurements along the spine of filament G47 using NH₃ and $^{13}CO J=2-1$

Magnetic field vectors across the entire G47 "bone"

Stephens I. et al. 2022, ApJL, 926, L6)

with identified young stellar objects (circles)

FIELDMAPS GALLERY

FIREPLACE: HAWC+ SURVEY OF THE CMZ PI: Dave Chuss

FIREPLACE

Pare et al. 2024

FIREPLACE

Pare et al. 2024

FINALTHOUGHTS

SUMMARY

High resolution and sensitivity SOFIA HACW+ observations

- Greatly transforms dust polarimetry to map magnetic fields in detail.
- Tracks magnetic field transitions, from parallel to perpendicular, indicating evolving substructures.
- Identifies gravity-dominated areas where magnetic fields align with gas movements in critical regions.
- Links core magnetic field characteristics to star formation processes, underscoring magnetic influence.
- Explores magnetic fields over large scales in spiral arms and extreme environments of our galaxy.

tastron / June 2021 Vol. 5 No. 6

Every new generation of eyes sees a new version of our galaxy, the Milky Way.

