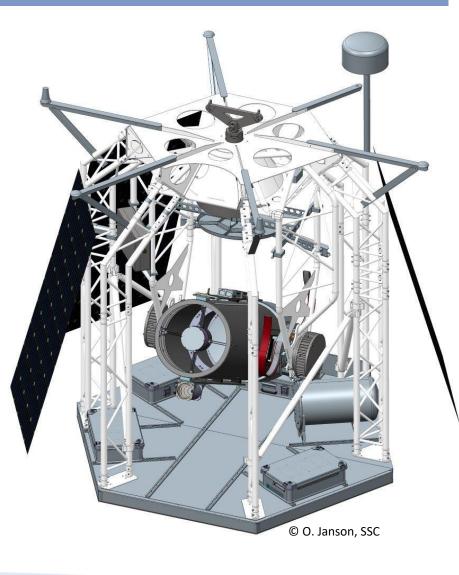


Balloon-borne opportunities for FIR observations


Philipp Maier, for the ESBO Team

Institute of Space Systems, University of Stuttgart pmaier@irs.uni-stuttgart.de

- 1. Balloon Capabilities
- 2. Observing Conditions (FIR)
- 3. Costs & Funding
- 4. Other Opportunities

1. Balloon Capabilities

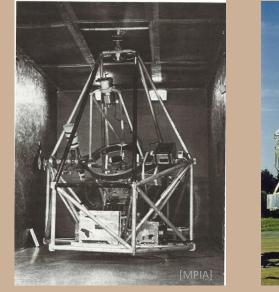
University of Stuttgart Institute of Space Systems

Current Scientific Balloon Flights, Snapshot

- ~ 25 large flights (> 1 t) per year
- Typically > 50% of them are astronomy + astrophysics
- Typically 3-4 over Antarctica
- Mostly NASA, some CNES / CSA, some SSC, some JAXA

Credit: D. Berry, NASA GSFC

1. Balloon Capabilities

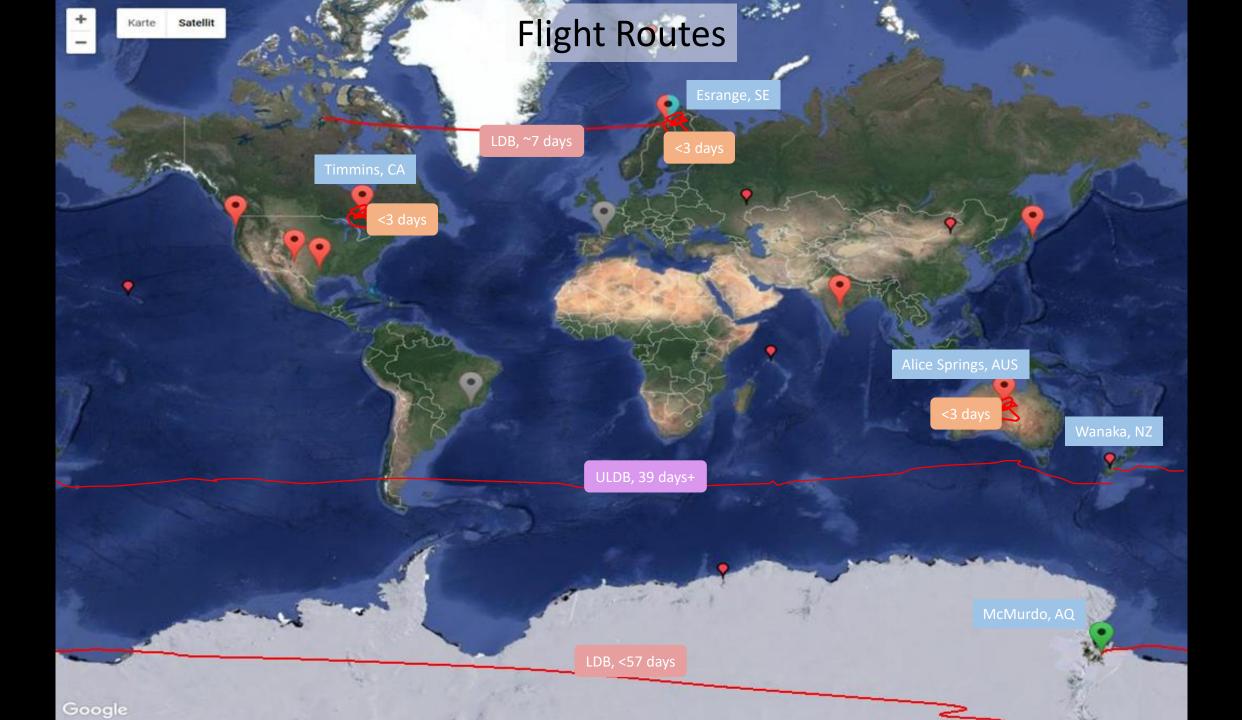

Current Scientific Balloon Flights, Snapshot

- ~ 25 large flights (> 1 t) per year
- Typically > 50% of them are astronomy + astrophysics
- Typically 3-4 over Antarctica

ESBO_L

Mostly NASA, some CNES / CSA, some SSC, some JAXA

Sidenote: early German FIR missions



THISBE, 1973

Goldener Drache, ~1980

1. Balloon Capabilities

NIGHT

ZERO PRESSURE BALLOON

Flight Duration	 2-3 days (April & Aug./Sept.) 7 days (transatlantic) Up to 57 days (Antarctica) Up to 46 days (goal: 100 days), Super Pressure Balloons 	
Suspended Mass	 Up to ~3600 kg for Zero Pressure Balloons Up to ~ 2300 kg for Super Pressure Balloons 	
Flight Altitude	 Up to ~ 38.7 km for Zero Pressure Balloons Up to ~ 34 km for Super Pressure Balloons 	
Pointing	"Single stage": < 5" (1 σ)	
Instrument Mass	Up to ~400/450 kg (excluding telescope)	
Power	Up to ~500 W for instrument	
Communication	 ~ 12 Mbit/s line of sight ~ 134 Kbit/s via Iridium Certus (over-the-horizon) 4-30 Mbit/s via Starlink at mid-latitudes (over the horizon) 100-200 Kbit/s via Starlink over Antarctica (over the horizon) Exotic option: "Data drops" Optical communication in the future? 	

Landings

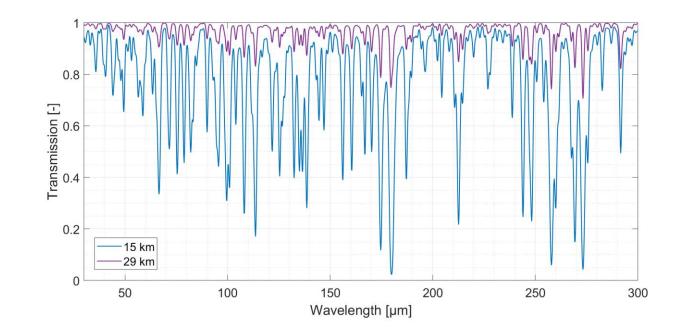
University of Stuttgart Institute of Space Systems

SuperBIT 2023 (37 days)

SuperBIT 2023

Balloon-borne opportunities for FIR observations

2. Observing Conditions


Atmospheric overburden

- Above ~99% of atmospheric mass (60% at 14 km)
- PWV column: < 0.5 μ m

Other aspects

ESBO_{DS}

- Reduced pressure broadening of telluric lines -> less dynamic separation between telluric & astronomical lines needed
- (Passively cooled) optics temperatures approx. -20°C to -30°C

Average

transmission [-]

Species / Line	Wavelength [µm]	14 km	29 km
[OI]	63.184	0.89	1.00
[OI] (LMC)	63.239	~0.7	1.00
[NII]	121.8	0.03	0.92
HD	58.770	0.09	0.96

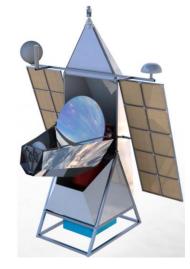
• Exemplary flight cost

Gondola	1.1 MEUR
Launch campaign (Sweden)	700 kEUR - ~150 kEUR balloon - ~150 kEUR helium - Site rental - Personnel

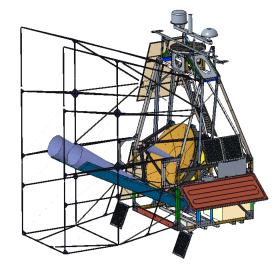
- Funding opportunities
 - U.S. primarily through NASA ROSES
 - APRA: < \$10M
 - Pioneer missions: up to \$20M (PUEO)
 - Explorer missions (GUSTO)
 - Europe
 - France: flight opportunities through CNES
 - Sweden: SNSB / Swedish Research council
 - Germany: opportunities only really as precursors for space misssions
 - Previously: (smaller) flight opportunities funded through H2020 project "HEMERA"
 - No direct follow on, current related proposal: HE "AIRLIFTS"

University of Stuttgart Institute of Space Systems

4. Other Opportunities


Open time observations on balloon borne telescopes

BLAST TNG *(2020)*


- 2.5 m telescope
- 3 MKID arrays @275 mK:
 - 250, 350, 500 μm
- 30, 41, 59 arcsec resolution
- 25% shared risk time

BLAST Observatory (proposed)

- 1.8 m telescope
- 3 MKID arrays @100 mK:
 - 175, 250, 350 μm
- 28, 39, 55 arcsec resolution
- 30% shared risk time (planned)

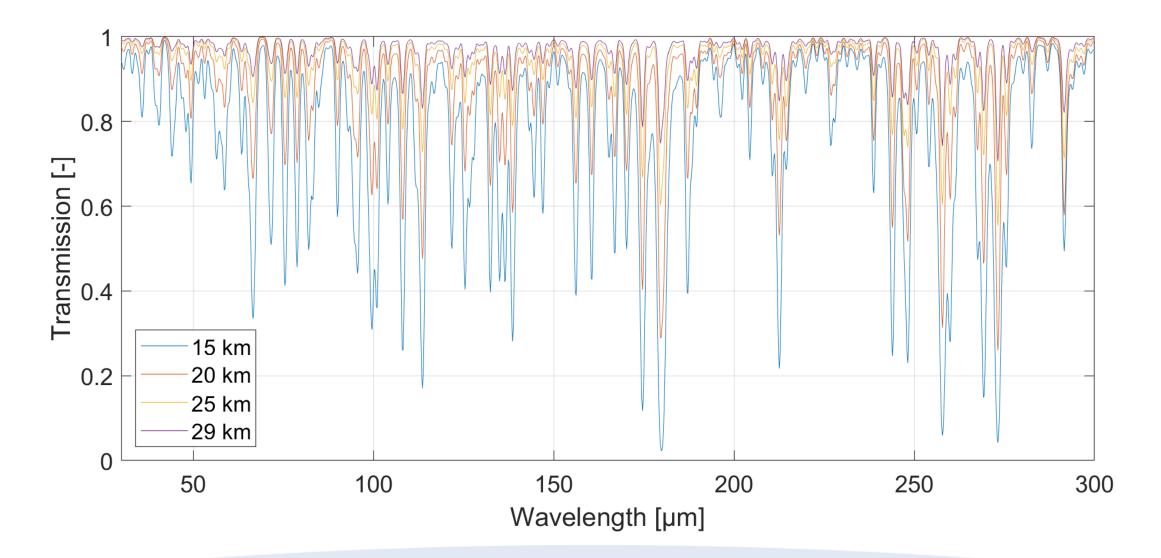
ASTHROS (Dec. 2024)

- 2.5 m telescope
- High-resolution spectroscopy @
 - 121.9 μm & 205.2 μm
- 12, 20 arcsec resolution
- (Still?) considering shared risk

4. Other opportunities

- STUDIO gondola
 - 817 kg gondola, currently for telescope mass of approx.
 250 kg & 0.5 m aperture
 - Telescope pointing: ± 40 arcsec
 - Scalable design, up to ~ 700 kg telescope & 2 t gondola
 - Extendable for transatlantic flights (7-8 days)

Thank you for your attention!


Thank you for your attention!

