The chemistry of astrophysical environments:

Synergies between far-infrared spectroscopy & laboratory experiments and future directions

814. Wilhelm and Else Heraeus Seminar:

Heritage of SOFIA – Scientific Highlights and Future Perspectives

2024 April 24

Helmut Wiesemeyer

with Rolf Güsten, Paul Hartogh, H.W. Hübers & David A. Neufeld

GREATful acknowledgments: SOFIA Science & Operations Centers, DSI, GREAT Team

Outline

- Helium hydride (HeH⁺), the first heteromolecular bond of the universe, and potentially important coolant.
- Heliumhydrid in NGC 7027 entdeckt

© NIESYTO design/ Latter/ CalTech/ NASA/ Güsten

- Jupiter's deuterium fraction, a relic from the protosolar nebula.
- The ¹⁶O/¹⁸O ratio in Earth's upper atmosphere and isotopic exchange reactions.

© NASA/ STScl, Wiesemeyer et al. (2024)

© Wiesemeyer et al./ NASA/ DSI (Stéphane Guisard & NIESYTO design)/ Simmon (NASA GSFC)

Cosmic evolution

z = 1000 125 6 0.33

© ESA /Carreau

Cosmic evolution

z = 1000 125 6 0.33

© ESA /Carreau

Cosmic evolution

z = 1000 125 6 0.33

© ESA /Carreau

I. Helium hydride (HeH⁺), first heteromolecular bond of the universe

(Güsten+ 2019, Nature 568; Neufeld+ 2020, ApJ 894)

Cloudy modeling of ionization and chemical structure

Why ionization-bounded planetary nebulae matter

HeH⁺ shell in NGC 7027 and cosmological matter/radiation decoupling in comparison:

	NGC7027	redshift 2600
T [K]	5100	7100
$n_{\rm H} [{\rm cm}^{-3}]$	$2.6 imes 10^5$	7400
$P/k [\mathrm{K cm^{-3}}]$	1.6×10^9	$5.3 imes 10^7$
$\int_{\nu_{\rm Ly}}^{\infty} I_{\nu} d\nu [{\rm erg s^{-1} cm^{-2} sr}]$	160	20
$n_{\rm e} [{\rm cm}^{-3}]$	5960	7080
$n({\rm He^+})n({\rm H^0})k_1 \; [{\rm cm^{-3}s^{-1}}]$	2.9×10^{-8}	3.6×10^{-18}
$n({\rm He^0})n({\rm H^+})k_2 \ [{\rm cm^{-3}s^{-1}}]$	2.0×10^{-12}	1.6×10^{-14}

- Main formation pathway in PNe is radiative association of He⁺ and H⁰ in overshooting HeII layer.
- Secondary pathway: associative ionization of metastable He (2³S).
- Destruction pathways the same as in early universe.

▲ HeH⁺ (J=1-0, v=0 @ λ149 μm, P1 @ λ 3.52 μm)
 Güsten et al. (2019), Neufeld et al. (2020)

Chemical evolution of the Universe from recombination to reionization (z=7.68*)

H-

Н

 H_{2}

HeH⁺ as a prominent coolant?

Thermal evolution of the Universe: from recombination to reionization

(inelastic collision rates: Desrousseaux, Lique et al. 2018,2020)

(KROME package v. 14.0, Grassi et al. 2014)

Thermal evolution of the Universe: from recombination to reionization

HD and HeH⁺ as coolants: Towards Population III Stars

A: Compressionally heated flow into dark-matter halo. $B \triangleright C$: Runaway H₂ cooling.

C ► D: PdV heating.

E: Gas fully molecular.

HD and HeH⁺ as coolants: Towards Population III Stars

A: Compressionally heated flow into dark-matter halo. $B \triangleright C$: Runaway H₂ cooling.

C ► D: PdV heating.

E: Gas fully molecular.

HD and HeH⁺ as coolants: Towards Population III Stars

13000

0

5

log₁₀ n (cm⁻³)

14

13 12

v=2

15

20

- C ► D: PdV heating.
- E: Gas fully molecular.

II. Jupiter's deuterium fraction, a relic from the protosolar nebula

Wiesemeyer+ 2024, A&A in press

© NASA/ STScl, Wiesemeyer et al. (2024)

HD (J=1-0) as tracer of the Jovian deuterium fraction

Left: HD, J=1-0 absorption (observed by 4G4, modeled without & with pressure shift).

Center: SOLEIL synchrotron, AILES beamline (collisional broadening of HD by H₂, Sung et al. 2023).

Right: CH₄ J=6-5 line with (green) & without (blue) stratospheric emission component (upGREAT & HIFI).

HD (J=1-0) as tracer of the Jovian deuterium fraction

Left: HD, J=1-0 absorption (observed by 4G4, model with experimental & theoretical* pressure shifts).
 Center: SOLEIL synchrotron, AILES beamline (collisional broadening of HD by H₂, Sung et al. 2023).
 Right: CH₄ J=6-5 line with (green) & without (blue) stratospheric emission component (upGREAT & HIFI).

* Stankiewicz et al. 2021, HD/He system

Vertical abundance and transmission profiles of Jupiter's atmosphere

Wiesemeyer et al. 2024, A&A in press

Synopsis of cosmic deuterium fractions

- Solar-wind and HD-derived (λ112 μm) protosolar D/H fractions agree.
- No significant difference between Jupiter and Saturn.

Jupiter D/H fractions derived from CH_3D/CH_4 and $HD/H_2 = D/H$.

References:					
Solar wind:	Gautier & Morel (19	97),			
	Geiss & Gloeckler (1998).			
High-z:	Riemer-Sørensen+ (2017),				
·	Cooke+ (2018),	. ,			
	Fields+ (2020).				
ISM:	Linsky+ (1998, 2006	6),			
	Tsujimoto (2011),				
	Friedman (2023).				
Jupiter:	Reeves & Bottinga	(1972),			
	Encrenaz/Combes+	(1978-1996),			
	Lellouch+ (2001),				
	Galileo mission:	Niemann+	1996,		
		Mahaffy+	1998		

Synopsis of cosmic deuterium fractions

III. Isotopic exchange reactions in Earth's upper atmosphere

Wiesemeyer+ 2023, Phys.Rev.Res.

Wiesemeyer et al./ NASA/ DSI (Stéphane Guisard & NIESYTO design)/ Simmon (NASA GSFC)

Heavy oxygen fraction in Earth's upper atmosphere, non-LTE via isotopic exchange:

.8 <mark>O</mark> 8.	+	³² O ₂	\leftrightarrow	¹⁶ O ¹⁸ O	+	¹⁶ O	(1)
.6 O	+	³⁶ O ₂	\leftrightarrow	¹⁶ O ¹⁸ O	+	18 O	(2)
^{.8} O(³ P _J)	+	X'	\leftrightarrow	¹⁸ O(³ P _J ')	+	Х	(3), X=N ₂ ,O ₂ ,O

Heavy oxygen fraction in Earth's upper atmosphere, non-LTE via isotopic exchange: ${}^{18}O + {}^{32}O_2 \longrightarrow {}^{16}O^{18}O + {}^{16}O \qquad (1)$ ${}^{16}O + {}^{36}O_2 \longrightarrow {}^{16}O^{18}O + {}^{18}O \qquad (2)$

Temperature [K]

1000

Ē

altîtude

100

#702

200

Heavy oxygen fraction in Earth's upper atmosphere, non-LTE via isotopic exchange:

¹⁸ O	+	³² O ₂	\leftrightarrow	¹⁶ O ¹⁸ O	+	¹⁶ O	(1)
16 O	+	³⁶ O ₂	\leftrightarrow	¹⁶ O ¹⁸ O	+	¹⁸ O	(2)
¹⁸ O(³ P _J)	+	Χ'	\leftrightarrow	¹⁸ O(³ P _J ')	+	Х	(3), X=N ₂ ,O ₂ ,O

The heavy oxygen fraction ¹⁸O/¹⁶O – a signpost of oxygenic metabolism?

Wiesemeyer et al. (2023), PhysRevRes 5, 013072

In the mesosphere & thermosphere of Earth, the ¹⁸O enrichment

- falls below solar wind value,
- formally agrees with the Dole effect*.

* Equilibrium of respiration & photosynthesis.

PhD C. Reuteneuer (2016, U.Copenhagen)

Tracer for ocean loss on Venus (cf. ¹⁶OI detection, Hübers et al. 2023).

Summary

- Modeling of astrophysical environments requires accurate rates for the chemical pathways to separate reactive and isotope/charge/isomer exchanging collisions from inelastic ones, for applications as varied as
 - HeH⁺ as potentially important coolant in the young universe,
 - the protosolar D/H fraction through IR spectroscopy of the gas giants (benefiting from full mapping),
 - thermal disequilibrium in the mesosphere and thermosphere of Earth,
 - isotopically heavy species for tracing ocean loss (Venus, tbd) or biogenic signatures (Earth).
- Analysis requires high-resolution IR spectroscopy and laboratory experiments (state-resolved rate coefficients for the full Maxwell distribution, line-shape parameters).
 See also OH/H₂O branching ratio: observations vs. laboratory measurements (Wiesemeyer+ 2016).
- The same holds in interstellar and star-forming environments, e.g.,
 - spin-isomer exchange in H_2D^+ and H_2 (Brünken+ 2014, L183),
 - fast isotopic exchange between OD & OH in envelopes around high-mass cores (Csengeri+ 2022),
 - the Galactic ¹²C/¹³C gradient deduced from the isotopologue ratio of CH (Jacob+ 2020).

Synergies

Fundamental spectroscopic parameters and cross sections

Forward modeling & radiative transfer

Instrumentation

Observing, calibration & data reduction

Thank you!

Fundamental spectroscopic parameters and cross sections

Forward modeling & radiative transfer

data reduction

Instrumentation

