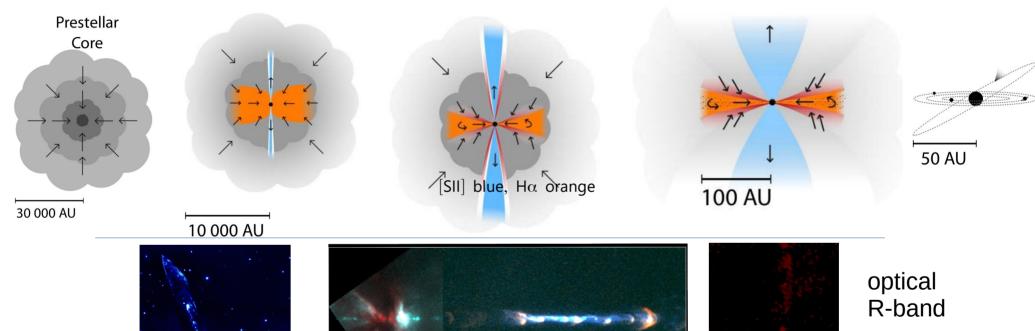
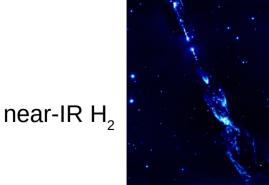
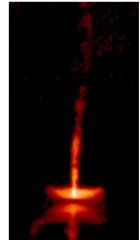
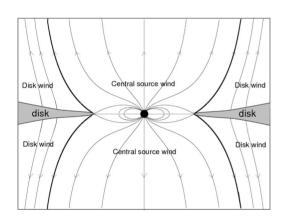
Probing protostellar outflows in the far-infrared [OI] lines




Jochen Eislöffel

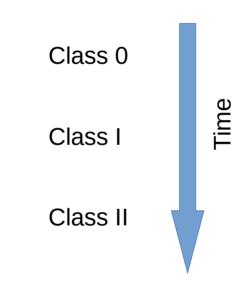

Thomas Sperling, Brunella Nisini, Teresa Giannini, Christian Fischer, Alfred Krabbe

The evolution of low-mass protostars

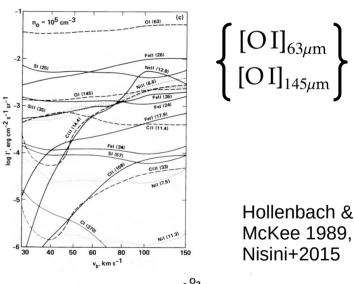

[FeII] - turquoise, [SII] – blue, H₂ - red Hα - orange

Reipurth+1999 McCaughrean+2002 NASA, Watson+2008

Three open questions


Accretion/ejection mechanism

$$f = \frac{\dot{M}_{\text{out}}}{\dot{M}_{\text{acc}}}$$


X-wind vs. disk wind Shu+ 2000 Ferreira+1997

Outflow evolution

Ellerbroek+2013, Watson+2016

Importance of FIR [OI]

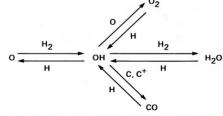
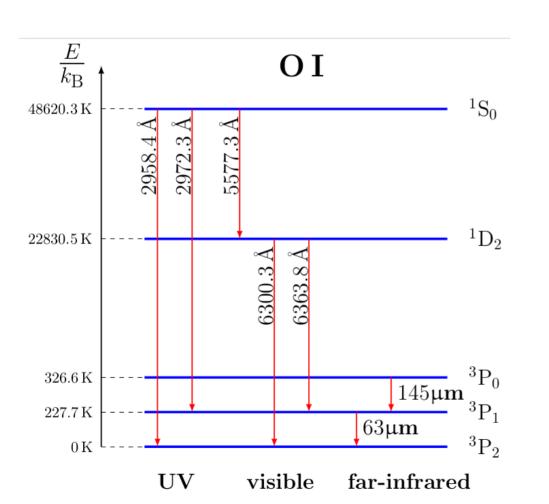



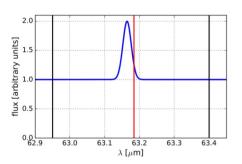
Fig. 2.—Fast neutral reactions with moderate activation energies or endothermicities dominate the oxygen chemistry in warm $T \gtrsim 300$ K postshock gas.

The far-infrared [OI] lines

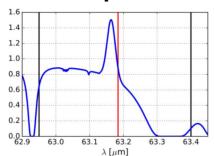
collisional excitation:

$$O(^{3}P_{j}) + p \xrightarrow{\text{collision}} O(^{3}P_{j'}) + p, \qquad j > j'$$

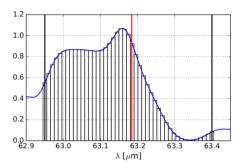
radiative decay:

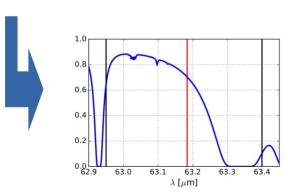

$$O(^3P_1) \xrightarrow{\text{time}} O(^3P_2) + h\nu_{63\mu\text{m}}$$

negligible extinction


Osterbrock & Ferland 2006, Draine 2011

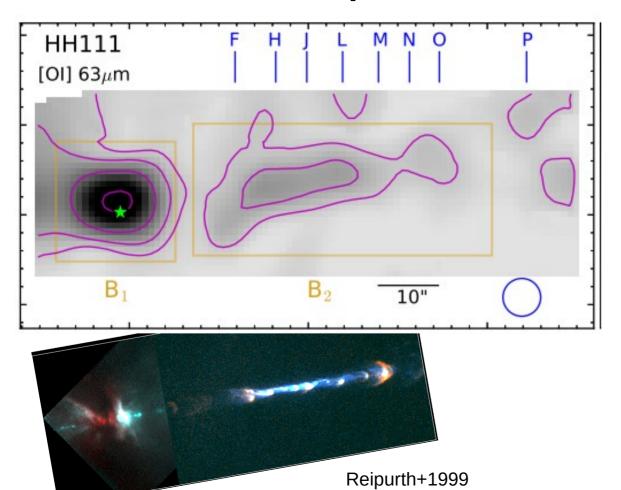
Signal path


Line signal



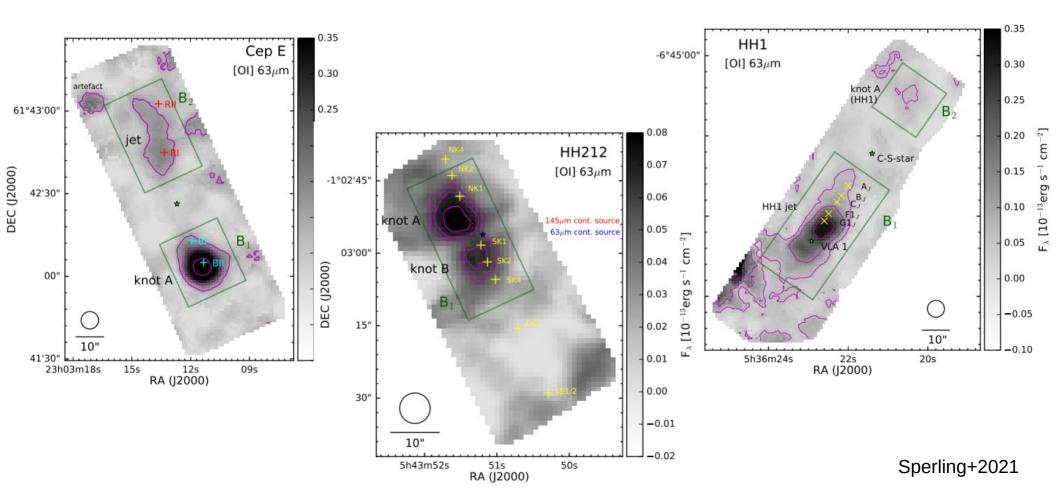
Passage through atmosphere

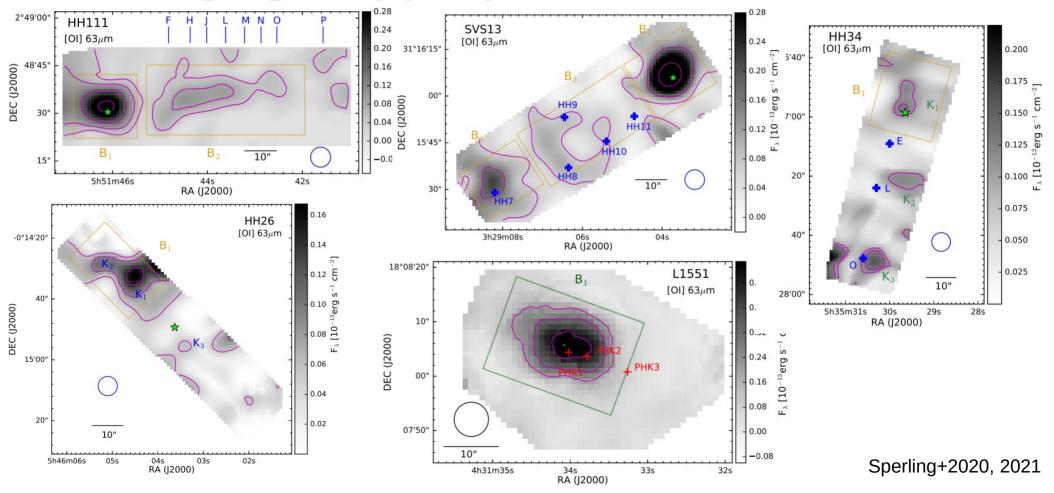
Convolved signal





Atmospheric transmission

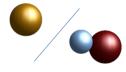

The spectacular HH111 jet



mass-loss rates derived from the [OI]63mum emission line maps.

First [OI] mappings of Class 0 outflows

First [OI] mappings of Class I outflows



The outflow components

		- CI	1'4 (FO.TI)	1'r 0
Target	Region	Class	$\dot{M}_{\rm out}({ m [OI]})$	$\dot{M}_{\rm out}$ & component
			$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	$10^{-7} M_{\odot} \mathrm{yr}^{-1}$
HH1	VLA 1	0	$\lesssim 25.9 - 52.6$	~ 6 in [Fe II]
	knot A		≤ 9.5 − 19.4	~ 4 in [S II]
				~ 0.1 in H_2
HH212	knot A and B	0	3.9 - 7.9	~ 10 in CO, SO, SiO
				≤ 3 in CO, SiO
				~ 1 in H ₂
Cep E	knot A	0	≤ 22.4 – 45.5	~ 200 in CO
	jet		$\lesssim 7.2 - 14.7$	
L1551	IRS 5	I	5.8 - 11.8	~ 8.6 in HI
				~ 1.7 in [Fe II]
				~ 0.4 in H_2

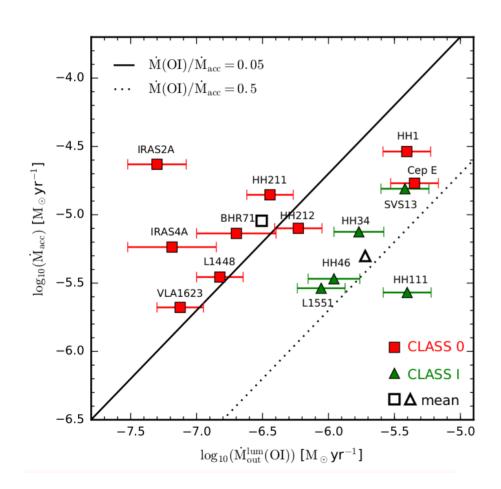
dominant component

= mainly molecular

The outflow components

Target	Region	Class	$\dot{M}_{\rm out}({\rm [OI]})$	$\dot{M}_{ m out}$ & component
			$10^{-7} M_{\odot} \mathrm{yr}^{-1}$	$10^{-7} M_{\odot} \mathrm{yr}^{-1}$
HH111	HH111IRS	I	26 – 53	4 in CO
	jet (knots F-O)		6 – 12	2 – 6 in [O I]λ6300
SVS13	SVS13A	I	25 – 51	30 in HI
	HH8-11		_	8.9 in[Fe II]
	НН7		_	7.0 in H ₂
НН34	HH34IRS	I	11 – 23	0.7 in [Fe II]
				0.03 in H ₂
				~ 1.5 in[O I]λ6300
HH26	НН26А	I	_	0.2 – 0.5 in H ₂

dominant component


Importance of [OI] outflow component

M(OI)7 out of 9 Class 0 ...underestimates the total mass-loss Class I 4 out of 5

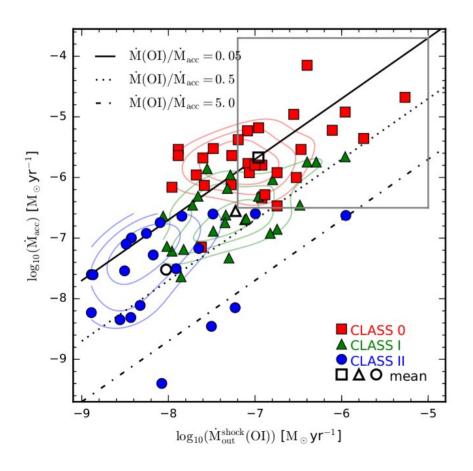
...potentially traces the **bulk**

mass-loss

Outflow efficiencies

most outflows:

f ~ 0.01-0.5


→ agreement with X-wind & disk wind

many Class 0 outflows

f <~ 0.05

Must take into account the molecular component!

Comparison with unresolved outflows

- WISH+DIGIT+WILL+GASPS surveys
- → single Herschel/PACS footprint
- only outflows
- → 28 Class 0, 23 Class I, 21 Class II

Mottram+2017, Alonso-Martinez+2017

Consistent!

Evolutionary trend apparent!

Summary

- Class 0/I outflows fully mapped in [OI] with SOFIA/FIFI-LS
- Determination of mass-loss rates and efficiencies
- Outflows initially mostly molecular, becoming more atomic with time