Molecules around Late-type stars seen in the infrared at high spectral resolution using EXES on SOFIA

Speaker: Guido W. Fuchs

Labastrophysics Group, University of Kassel

Wednesday, 24th of April 2024, 14:00 - 14:30 Uhr,

University of Stuttgart, Raumfahrtzentrum Baden-Württemberg 814. WE-Heraeus Seminar: Heritage of SOFIA – Scientific Highlights and Future Perspectives

Content

- I. Late-type stars the birthplace of molecules and chemistry
- II. Laboratory infrared experiments on molecules
- III. IR astrophysical observations (EXES/SOFIA)
 - i. Hyper giants
 - ii. Variable stars

IV. Summary & Outlook

I. Late-type stars – the birthplace of molecules and chemistry

• Stars at late stages eject matter into space atoms → molecules (chemistry)

Questions:

- Which molecules are formed first? Can we detect them?
- 2. What do these molecules tell us about the stellar environment?

Radio strong tool, but IR is a strong tool, too.

Advantage 1: unique molecule identification

- Low resolution good for dust and solids
- Disadvantage: No or only ambiguous identification of the molecules possible
- Example: Spitzer spectrum of S star NP Aur [1] TiO? Yes or no?

"Normalized Spitzer spectrum of [S star] NP Aur, the opacities of candidate dust species and the normalized absorption of TiO [...]" [1]

Advantage 1: unique molecule identification

Could it be **VO** instead ?

(pgopher) simulated spectrum of TiO and VO at 600K with R=100

Advantage 1: unique molecule identification

Could it be VO instead ?

(pgopher) simulated spectrum of TiO and VO at 600K with R=1000

Advantage 1: unique molecule identification

Could it be **VO** instead ?

(pgopher) simulated spectrum of TiO and VO at 600K with $R=10^5$

Advantage 1: unique molecule identification

High-res allows unique molecule identification

(pgopher) simulated spectrum of TiO and VO at 600K with $R=10^5$

Advantage 2: Probing dynamics

- temporal changes of stellar dust envelopes visible at low res
 → epochs [1]
- What are the dynamical processes?
- Are molecules involved?

Three epochs: (I) late 1960s/early 1970s, (II) IRAS-LRS Atlas (1983) (epoch II), and (III) UKIRT data (mid-1990s) [1]

Advantage 2: Probing dynamics

For molecules:

High-res Line profile / shifts

Which molecules are to be expected?

Bond energies of strongly bound diatomic molecules relevant for dust formation, plotted against the abundance of the less abundant of its constituents. [1]

Chemical equilibrium abundances of some gaseous Al/O species in a typical stationary outflow with solar element abundances [1].

[1] Gail & Sedlmayr (1998), Far. Disc. 109, 303

[1] Gail & Sedlmayr (1998), Far. Disc. 109, 303

Our aim

Obtaining high-res (R=10⁴ - 10⁵) IR data of late-type stars environments

- Enabling IR observations via laboratory experiments
- \circ Looking for new species in the IR
- Line survey of VY CMa and similar stars (e.g., NML Cyg)
- \circ Probing the dynamics of molecular layers of variable stars (o Cet, χ Cyg, IK Tau, R Cas)

II. Laboratory infrared experiments on molecules

Supersonic Jet

First Mid-Infrared Gas Phase Spectrum of Titanium oxid (TiO, $X^{-3}\Delta_r$, $C_{\infty\nu}$) incl. isotopologues (⁴⁷Ti, ⁴⁸Ti, ⁴⁹Ti, ⁵⁰Ti) around 1000 cm⁻¹

First Mid-Infrared Gas Phase Spectrum of Titanium oxid (TiO, $X^{3}\Delta_{r}$, $C_{\infty v}$) incl. isotopologues (⁴⁷Ti, ⁴⁸Ti, ⁴⁹Ti, ⁵⁰Ti) around 1000 cm⁻¹

Intensity / arb.u.

Dialuminium oxid, $Al_2O(X^{-1}\Sigma_g^+), D_{\infty v}$

Vanadium oxid, VO $(X \ ^{4}\Sigma^{-}), C_{\infty v}$

Hyperfine structure

nuclear spin I (⁵¹V)= 7/2⁻

4 spin (Ω , with Λ =0) components

Hund's coupling case (b)

Beside own data...

We use databases like

- HITRAN (NH₃, CO₂, H₂O,...) [1]
- EXOMOL (NH₃) [2]

for line assignments

III. IR astrophysical observations

SOFIA *Stratospheric Observatory For Infrared Astronomy*

EXES (Echelon Cross Echelle Spectrograph)

4.5 – 28.3 µm wavelength region, $R \approx 50,000 - 100,000$ 1024 x 1024 Si:As detector array Cross-dispersed spectrum: Echelon (coarsely-ruled, steeply-blazed aluminum reflection grating) + echelle grating

TEXES / IRTF (Mauna Kea)

TEXES (Texas Echelon Cross Echelle Spectrograph) $4.5 - 25 \mu m$ wavelength region $R \approx 50,000 - 100,000$

3m NASA Infrared Telescope Facility (IRTF)

21

III. IR astrophysical observations

i. Hypergiants: $(17-40 \text{ M}_{\odot})$

VY CMa
NML Cyg
IRC+10216

ii. Variable stars: red giants & AGBs $(1 \text{ to } 2 \text{ M}_{\odot})$

χ Cyg
O Cet (Mira)
IK Tau

4. R Cas

Home made data analysis software

- Problems with standard software to deal with complicated baseline of TEXES/EXES observations
- Homemade software package SpExes (A D), python code
- Features:
 - Baseline substraction (including instrument signature, and terrestric atmosphere)
 - Compilation of subspectra
 - Simulation of target molecular species
 - Line profile analysis
 - Excitation diagram analysis (<u>new method</u>!)

i) The mid-IR high-resolution line survey of VY CMa

part III

region 3: 6.6 - 7.4 μ m (not shown in this talk \Rightarrow stellar water lines)

i. Hypergiants: SiO isotopologues in the VY CMa envelope TEXES /IRTF

1) Ro-vibration (unique molecule identification)

2) Isotope sensitve

3) excitation (temperature) 4) Geometrical structure and dynamics (P-Cygni)

SiO in VY CMa Envelope using EXES/SOFIA

- Broader frequency coverage
- Improved line shape analysis (smaller telluroic features)

Excitation diagram analysis of SiO, VY CMa

- getting the rotational & vibrational excitation disentangled

SiO in VY CMa

²⁸ Si ¹⁶ O	Geballe et al. (1979) [1] (absorption)	Cernicharo et al. (1993) [2] (emission)	This work (absorption)*	(emission)*
T _{rot} (v=1-0)	525±50 K		335 (±1) K	480 (±3) K
T _{rot} (v=2-1)	600±100 K		158 (±4) K	521 (±45) K
T _{vib}	600±100 K		527 (±7) K	542 (±17) K
N _L	$(7\pm3)\times10^{17} \text{ cm}^{-1}$	$> \times 10^{20} \text{ cm}^{-1}$	$(1.23\pm0.09) \times 10^{19}$	$(2.7\pm0.4) \times 10^{20}$
$N_{L, \tau \text{ corr}}$			$(7.1\pm0.7) \times 10^{19}$	$(4\pm 2) \times 10^{24}$

*Thin optical case (TOC), $T_{bg} = 3700 \text{ K}$

Problem: Lines of ²⁸Si¹⁶O are optically thick.

SiO isotopologues in VY CMa

²⁸ Si ¹⁶ O	This work (absorption)* ²⁸ Si ¹⁶ O	²⁹ Si ¹⁶ O	³⁰ Si ¹⁶ O	Geballe et al. (1979) ²⁸ Si ¹⁶ O [1]
T _{rot} (v=1-0)	335 (±1) K	316 (±8) K	235 (±5) K	525±50 K
T _{rot} (v=2-1)	158 (±4) K	-	-	600±100 K
T _{vib}	527 (±7) K	527 (fixed) K	527 (fixed) K	600±100 K
N _L	$(1.23\pm0.09) \times 10^{19}$	1.1×10^{18}	1.2×10^{18}	$(7\pm3)\times10^{17} \text{ cm}^{-1}$

*Thin optical case (TOC), $T_{bg} = 3700 \text{ K}$

Ratios:	This work	Geballe et al. (1979) [1]
²⁸ Si/ ²⁹ Si	11^{+20}_{-1} **	20(±5)
²⁹ Si/ ³⁰ Si	0.93 (±0.1)	1.0(±0.3)

**Using τ correction for upper limit

Ammonia in the envelope of VY CMa @ 10 – 11.5 µm (EXES+TEXES)

- Broader frequency coverage than in [1]
- Consistent NH₃ simulation in LTE

v_2 N-H umbrella mode

Excitation diagram analysis NH₃ in VY CMa

²⁸ Si ¹⁶ O	Wong et al. (2018) [1] (radio + IR)	This work (absorption)*	ortho	para
$T_{rot} (v_2=1-0)$		253 (±3) K	~328 (±6) K	~223 (±3) K
T _{vib}	$100 - 400 \ K$	300 (fixed) K	300 (fixed) K	300 (fixed) K
$\tau_{\rm max, RTE}$		0.01	0.01	0.01
N _L	$\sim 2 \times 10^{15} \text{ cm}^{-1} (@ 10^{16} \text{ cm})$	$(1.5 - 3.5) \times 10^{15}$	$(0.8 - 1.1) \times 10^{15}$	$(1.4 - 6.6) \times 10^{15}$

*Full RTE , $T_{ex} = T_{vib} = 300$ K, $T_{bg} = 2400$ K

33

EXES/SOFIA, VY CMa

The case of χ Cyg

- Mira-type (regular) variable 408 days periode, Magnitude from +4.5 to +12.8
- Intermediate mass star $\approx 2 M_{\odot}$ Lifetime: $500 \text{ Mio} - 10^9 \text{ years}$ 169 pc (553 ly)^[1] • Distance:

 $6,000 - 9,000 L_{\odot}$ ^[1]

2,441 – 2,742 K^[1]

- $348 480 R_{\odot}$ ^[1] • Radius:
- Luminosity:
- Temperature:

Figure 4 from [1], IOTA interferometer, $1.6 \,\mu m$, Mt. Hopkins in southern Arizona

χCyg $v_{lsr}(\chi Cyg) = 12.00 \ km s^{-1}$ SiO around MMMMMMMMMMMMMMMM χCyg 9) $\phi = 0.86$ (JD 2460024 5), $v_{isr}(earth) = -32.67$ km s⁻¹ at various 8) $\phi = 0.86$ (JD 24596412), $v_{kr}(earth) = -28.59$ km s⁻¹ + 0.1138 cm⁻¹ (calibration correction) stellar phases alvalmma han why han My My My Man hand (TEXES/IRTF) 7) $\phi = 0.59$ (JD 24595278), $v_{isr}(earth) = 0.04 \ km s^{-1}$ minner. 6) $\phi = 0.50$ (JD 2460286.6), $v_{lsr}(earth) = -4.01 \text{ km s}^{-1}$ \rightarrow line profile ntensity [a.u.] analysis 5) $\phi = 0.38$ (JD 2459837.8), $v_{isr}(earth) = -4.38$ km s Mor Month Martin Martin Martin 4) $\phi = 0.34$ (JD 2460218.8), $v_{isr}(earth) = -1.55$ km s⁻¹ \rightarrow infall motion of SiO 3) $\phi = 0.28$ (JD 2459403.0), $v_{lsr}(earth) = -23.97$ km s⁻¹ 2) $\phi = 0.17$ (JD 2460150.9), $v_{lsr}(earth) = -18.55$ km s⁻¹ = 0.17 (JD 2459756 0), $v_{lsr}(earth) = -27.09$ km s⁻¹ 28SiO 28SiO ²⁸SiO ²⁸SiO 28SiO 28SiO v = 1.0v = 1.0v = 1-0v = 1-0= 1-0 v = 1 - 0i = 1.0SIO P(16) P(15) P(14) P(13) P(19) P(18) P(17) ATRAN data (unshifted) 1205 1200 1201 1203 1204 1206 1207 1202 1208 1209 1210 frequency [cm⁻¹]

Excitation diagram analysis of $^{28}Si^{16}O$, χ Cyg

(separate rotational & vibrational excitation diagram method)

TEXES /IRTF, Dec 8, 2023 ($\phi{\sim}0.5$)

What about something new?

Something that has not been seen in the IR before?

What about TiO?

Frequency [cm⁻¹]

TiO in χ Cyg @ different phases

TiO simulations work fine for all phases

TiO in χ Cyg @ different phases

TiO simulations work fine for all phases

IV. Summary

- Mid-IR <u>high-resolution</u> spectroscopy useful tool
 - molecule identification in CSE
 - as analytic tool of dynamical processes (e.g. SiO observations of VY CMa & χ Cyg)
- Laboratory investigations indispensable basis for astrophysical studies (e.g., TiO, VO, Al₂O)
- We found TiO in the molecular layer of χ Cyg!

IV. Outlook

- Further laboratory measurements on astrophysically relevant small molecules
- Finish current projects (variable stars / line survey towards VY CMa and other late-type stars → data mining in EXES/SOFIA archive)
- Use JWST MIRI to investigate suitable molecules (R=1,500 to 3,500)
- What about balloons, airships, or an IR telescope on the moon?

Acknowledgement & Funding:

Laboratory: Daniel Witsch, Eileen Döring, Alexander A. Breier, Fabian Peterß, Thomas F. Giesen ⁽¹⁾ ⁽¹⁾Institute of Physics, Laboratory Astrophysics, University of Kassel, Germany

Theory/Spectroscopy: Jürgen Gauss⁽²⁾, Koichi M.T.Yamada⁽³⁾ ⁽²⁾ Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Germany,⁽³⁾ AIST, Tsukuba-West, Japan

Astrophysical Observations: SOFIA/EXES: Edward Montiel⁽⁴⁾, Curtis DeWitt⁽⁴⁾, Matt Richter⁽⁵⁾ ⁽⁴⁾SOFIA/USRA, Universities Space Research Association, ⁽⁵⁾Department of Physics, University of California, Davis, CA, USA

IRTF/TEXES: Thomas K. Greathouse⁽⁶⁾, Rohini S. Giles⁽⁶⁾, John H. Lacy⁽⁷⁾ ⁽⁶⁾ Southwest Research Institute, San Antonio, Texas, USA, ⁽⁷⁾ University of Texas at Austin, Department of Astronomy, Austin, Texas, USA

Thank you for your attention!

Title: Molecules around Late-type stars seen in the infrared at high spectral resolution using EXES on SOFIA

Speaker: Guido W. Fuchs (University of Kassel, Germany)

Abstract:

Our universe is full of molecules. Most molecules have been discovered with the help of radio or MM telescopes based on their rotational spectra. But molecules can also be detected unambiguously in the infrared (IR) range. Here, even those can be detected that do not have a permanent electric dipole moment. If available IR high-resolution laboratory spectra can be used to identify molecules from astrophysical observations. The molecular envelopes around aging stars provide an excellent opportunity to study molecular species and also the dynamics of their environment like the outflows, shock waves, the expansion of molecular shells or the infall of material into a star. For this purpose, observations with the SOFIA aircraft telescope using the EXES spectropgraph were performed as well as observations using the TEXES instrument at the IRTF telescope on Mauna Kea. Hawaii on selected astronomical objects. Example IR spectra from hypergiant stars such as VY CMa and NML Cyg will be presented. With the help of the high-resolution spectra, molecular abundances, ambient temperatures, and dynamical processes can be determined. This will be demonstrated on the molecule silicon monoxide (SiO), ammonia (NH₃) and others.