Maria T. Beltrán (Arcetri) Mélisse Bonfand (U. Virginia) Ryan Boyden (U. Virginia) James M. De Buizer (SOFIA) **Giuliana Cosentino (Chalmers)** Juan Farias (U. Texas) Rubén Fedriani (Chalmers/IAA) Prasanta Gorai (Chalmers) **Chi-Yan Law (Chalmers)** Mengyao Liu (U. Virginia) Josh Marvil (NRAO) Vivian Rosero (NRAO) Ralph Shuping (SSI) Jan E. Staff (UVI/Chalmers) Kei E. I. Tanaka (Tokyo Tech) Zoie Telkamp (U. Virginia) **Barbara Whitney (SSI)** Yao-Lun Yang (RIKEN) Yichen Zhang (U. Virginia)

Undergraduate/Master students:

Sam Crowe (U. Virginia) Altony Foote (U. Virginia) Emiko Gardiner (U. Virginia) → Ph.D. @ UC Berkeley Ishika Gobin (U. Virginia) Jenna Karcheski (UW Madison) **Omar Khattab (Franklin & Marshall)** Lauren Light (Smith College) Ana Sofia Marulanda-Duque (EAFIT) Jorge Mifsut Benet (Chalmers) → Ph.D. @ Paris Sorbonne Phillip Oakey (U. Virginia) Francisco Sequeira-Murillo (U. Costa Rica) → Ph.D. @ UW Madison Louis Seyfritz (U. Virginia) → Masters @ Paris Sciences et Lettres Ioanna Stelea (Columbia) → Ph.D. @ UW Madison Zaina Tarafder (U. Virginia) Erum Vohra (U. Virginia)

The SOFIA Massive (SOMA) **Star Formation Survey**

Jonathan C. Tan (Chalmers & U. Virginia)

First Stars and Black Holes

Galaxy Formation

Abel+

/ogelsberger+

Galaxy Evolution

Whitmore+

The Importance of Massive Stars

Star Formation & ISM

essen+

Galactic Centers & AGN

Planet Formation McCaughrean+ O'Dell+

From Clouds to Stars Gravity Degeneracy Rotation Pressure Winds & **Cosmic Rays** Supernovae Magnetic Fields **Radiation Pressure** Turbulence **Thermal Pressure**

Definitions: Core \rightarrow star or binary (from central disk) Clump \rightarrow star cluster Cloud (GMC) \rightarrow OB association

Open Questions

- Galaxy scale: What sets the SFR in galactic disks?
- GMC properties & lifecycle: Gravitationally bound? Lifetimes?
- Initiation of SF: external triggering or spontaneous gravitational instability? Initial conditions: how close to equilibrium?
- Accretion mechanism: [turbulent/magnetic/thermal-pressure]-regulated fragmentation to form cores vs competitive accretion / mergers
- Timescale: fast or slow (# of dynamical times)?
- End result:
 - Initial mass function (IMF)
 - Binary fraction and properties

How do these properties vary with environment? Subgrid model of SF? Threshold n_{H*}? Efficiency ε_{ff}?

Massive Star Formation Theories

Core Accretion:

(Bonnell, Clarke, Bate, Pringle 2001; Bonnell, Vine, & Bate wide range of dm^{*}/dt ~10⁻⁵ - 10⁻² M_{\odot} yr⁻¹ 2004; Schmeja & Klessen 2004; Wang, Li, Abel, Nakamura (e.g. Myers & Fuller 1992; Caselli & Myers 1995; McLaughlin & Pudritz 1997; 2010; Padoan et al. 2020 [Turbulence-fed]; Grudić et al. 2022) Osorio+ 1999; Nakano+ 2000; Behrend & Maeder 2001) Massive stars gain most mass by Bondi-**Turbulent Core Model:** Hoyle accretion of ambient clump gas

(McKee & Tan 2002, 2003) Stars form from "cores" that fragment from

the "clump"

 $\bar{P} = \phi_P G \Sigma^2$

If in **equilibrium**, then **self-gravity** is balanced by internal pressure: B-field, turbulence, radiation pressure (thermal P is small)

Cores form from this turbulent/magnetized medium: at any instant there is a small mass fraction in cores. These cores collapse quickly to feed a central disk to form individual stars or binaries.

 $\dot{m}_* \sim M_{\rm core}/t_{\rm ff}$

Competitive (Clump-fed) Accretion:

Originally based on simulations including only thermal pressure.

Massive stars form on the timescale of the star cluster, with relatively low accretion rates.

Violent interactions? **Mergers?**

(Bonnell, Bate & Zinnecker 1998; Bally & Zinnecker 2005 Bally et al. 2011; 2021)

CISCO (H2 (v=1-0 S(1)) - Cor

Massive Prestellar and Protostellar Cores Exist? Dynamical state? SFE (CMF → IMF)? Multiplicity?

Analytic Theory: e.g. Turbulent Core Model McKee & Tan (2002, 2003)

t=0 protostar formation

Filaments, Clumps & Cores from Collision of Magnetized GMCs

Wu et al. 2015, 2017a, b, 2020 Hsu et al. 2023 García-Alvarado et al., in prep

A natural mechanism to provide a large scale environment with disturbed kinematics and some relatively isolated massive cores

A

DV-22

te E

A

Land Land

112

DV-22

a

Protocluster and Core Mass Function Studies

Magneto-Kinematic Mapping of IRDCs

0.12

IN REAL PROPERTY AND

0.1

0.2

.....

DV-22

POLIMAP - Polarized Light 0.3 from Massive Protoclusters

N747NA

POLIMAP - Polarized Light from Massive Protoclusters

- 214µm polarized dust emission - SOFIA-HAWC+ (18") - Dust grains align with B-fields - Davis-Chandrasekhar-Fermi (DCF) methods to estimate Bfield strength

N747NA

POLIMAP - Polarized Light from Massive Protoclusters

Law, Tan et al. (2024)

l (°)

POLIMAP - Polarized Light from Massive Protoclusters

Law, Tan et al. (2024)

Magnetic field strength mapping

POLIMAP - Polarized Light from Massive Protoclusters

Law, Tan et al. (2024)

Mass-to-flux ratio mapping

Virial velocity dispersion ->

mass IREX

2

mass

Е Ш

Sub-mm

POLIMAP - Polarized Light from Massive Protoclusters No bkg. sub. Bkg. sub. Law, Tan et al. (2024) 2.5_{f} 2.5_Г **Testing Turbulent Core Accretion** (b) (a) 2.0 2.0 (mG) (mG) $B_{\rm tot, \, obv}$ $B_{ m tot,\,obv}$ Ŷ 0.5 0.5 **Observed B-field** 0.00.0 $1.0 1.5 B_{\rm vir}$ (mG) 2.0 0.5 2.0 1.5 0.5 2.5 1.0 2.5 $B_{ m vir,\,FIR_{bkg-sub}}$ (mG) 2.5_Г 2.5₁ (d) (c) 2.0 2.0 Ü 1.5 (mG) $B_{\rm tot, \, obv}$ $B_{\rm tot, obv}$ 0.5 0.5 $0.9^{\swarrow}_{.0}$ 0.92.0 2.0 2.5 0.5 2.5 0.5 1.0 1.5 $B_{\rm vir}$ (mG) $B_{\rm vir}$ (mG) Virial Equipartition B-field ->

Sub-mm Em. mass

MIREX mass

POLIMAP - Polarized Light from Massive Protoclusters Law, Tan et al. (2024) Testing Turbulent Core Accretion

(1) (1)

Observed B-field ->

Virial B-field ->

MIREX mass

mass

E E E

Sub-mm

Massive Protostellar Cores Exist? Dynamical state? SFE (CMF->IMF)? Multiplicity?

Analytic Theory: e.g. Turbulent Core Model McKee & Tan (2002, 2003)

 $\dot{m}_{*d} = 1.37 \times 10^{-3} \epsilon_{*d} (M_{c,2} \Sigma_{cl})^{3/4} (M_{*d}/M_c)^{1/2} M_{\odot} \mathrm{yr}^{-1}$

t=0 protostar formation

m∗=8M⊙

Massive Protostellar Cores: simulations

Peters et al. (2011) $M_{c} = 100 M_{\odot}, R_{c} = 0.5 pc,$ $n_{\rm H} = 5400 \,{\rm cm}^{-3}, \, B = 10 \mu {\rm G}$ Seifried et al. (2012)

Myers et al. (2013)

rmerçon et al. (2022) .2pc, u = 2, 5

1₀					а	age =				13.7 ky			
Ì									ĺ.,		ĺ.,	<u>_</u>	
			-	ς.									
				•	Ĺ								
			4	1									
Ĵ									Ċ.	Ś.		1	
_	25	50 У) / [່ວ aເ	ן נ	25	0	5	00) .6	75 7	50 [k	m,

Massive Protostellar Cores: protostellar evolution & radiative transfer models

Zhang & Tan (2011), Zhang, Tan & McKee (2013), Zhang, Tan & Hosokawa (2014), Zhang & Tan (2018) Three primary parameters of Turbulent Core Model: Σ_{clump} , M_{core} , m^{*}

Massive Protostellar Cores: MHD simulations

Staff, Tanaka & Tan (2019), Staff et al. (2023)

 $\Sigma_{\text{clump}} = 1 \text{ g cm}^{-2}$ $M_{core} = 60 M_{\odot}$ m∗ = 1 - 24 M⊙

Jan Staff 1977 - 2023

m (211)

m (211)

m (011)

Time = 0 year

Shock-ionization & free-free emission (Gardiner et al. 2024) (ne) 12500 5.3GHz 230GHz 2 M 2 M . 2 M 2 M **Polarized dust emission** (ne) 12500-(Küffmeier, Xu et al., in prep.) 230GHz 5.3GHz 4 M $4 M_{\odot}$ 0.10 -0.10 (ng) 12500 6250 5.3GHz 230GHz $\langle \mathbf{T}_{\mathbf{H}} \rangle$ 8 M **8 M** 0.05 0.05 (ng) 12500 5.3GHz 230GHz 0.00 0.00 12 M 12 M (ne) 12500 -0.05 --0.05 12 6250-230GHz 5.3GHz (Т_{Н+}) 16 Ма $\langle \chi_{\mathbf{H}+}$ 16 M 16 M 16 M 18750 (ng) 12500 --0.10 --0.10 -12 $P_{frac} = 8\%$ 230GHz 6250 5.3GHz 24 M 24 M -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 $\mathbf{24}$ -6250 0 6250 -6250 0 6250 -6250 0 6250 -6250 0 6250

CO line emission (Xu et al. 2024; Stelea et al., in prep.)

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Massive Protostar Observations

The SOFIA Massive (SOMA) Star Formation Survey

Massive Protostellar Cores: protostellar evolution & radiative transfer models

Zhang & Tan (2011), Zhang, Tan & McKee (2013), Zhang, Tan & Hosokawa (2014), Zhang & Tan (2018) Three primary parameters of Turbulent Core Model: Σ_{clump} , M_{core} , m^{*}

M⊗	T, 100 AU, 16 M _☉	n _H ,	v, 1000 A	U, 16 M _☉	T, 1000 AU, 16 M	l _☉ n _H , v, 20000	AU, 16 M _☉	T, 20000 AU,	, 16 1
<mark>0_km/s</mark> 000 ₁ km/s	1044		PĄU	10. 1000, km/	s 1004U	2000AU	1 <u>0 km/s</u> 1000 km/s	2000AU	
104	10 ⁶ 10 ⁸ Density, n _H (cm ⁻³)	10 ¹⁰ 10 ¹²		1014	10	100 1000 Temperature, T (K)			
mJy	1.13e3 mJy		8.89e3 mJy		2.00e4 mJy	2.55e5 mJy	3.12e6	mJy	7

Prediction: increasing symmetry from MIR-FIR

Massive Protostar G35.2N: d=2.2kpc; L~10⁵L_o

De Buizer, Liu, Tan et al. (2017)

Peering to the Heart of Massive Star Birth

The SOFIA Massive (SOMA) http://www.cosmicorigins.space/soma **Star Formation Survey** SOFIA 37µm

Î

Conditions for Massive Star Formation? m* vs Sclump

Massive protostars can form where $\Sigma_{cl} < 1 \text{ g cm}^{-2}$ m* > 25 M_{\odot} generally favors high Σ_{cl} >0.3 g cm⁻²

B-fields limit fragmentation (Butler & Tan 2012)
Internal protostellar feedback limits core SFE

(Tanaka, Tan & Zhang 2017)

SOMA+

SOMA Archival: Analysis of SOFIA-FORCAST data archive (Crowe+ in prep.; Tarafder+ in prep.; Zhang+ in prep.)

SOMA Imaging: FORCAST image fitting (Yang+ in prep.; Mifsut Benet+ in prep.)

SOMA Radio: VLA/ATCA all sources observed (Rosero et al. 2019; Sequeira-Murillo+)

SOMA-Radio

VLA/ATCA all sources observed: Rosero+ 2019 Rosero+ in prep. Sequeira-Murillo+ in prep. Vohra+ in prep.

~3 - 10 mJy; 0.3" K-band (1.3 cm) (9.9 and 23.9 GHz) C-band (6 cm), (5.3 and 6.3 GHz)

Radio fluxes to break IR-SED model degeneracies.

SOMA+

SOMA Archival: Analysis of SOFIA-FORCAST data archive (Crowe+ in prep.; Zhang+ in prep.)

SOMA Imaging: FORCAST image fitting (Yang+ in prep.; Mifsut Benet+ in prep.)

SOMA Radio: VLA/ATCA all sources observed (Rosero et al. 2019; Sequeira-Murillo+)

SOMA mm/submm: ALMA (Band 6) - hi-res 5 observed (Zhang et al. 2019a, b, 2022; Law et al. 2022) - med-res 8 observed (Zhang et al. 2019c) - low-res ~15 observed Chemistry - SMA, IRAM30m, GBT, Yebes

Sails as a summer is a summer of

DV-22

to

"Ordered" Massive Binary Star Formation

SOMA+

SOMA Archival: Analysis of SOFIA-FORCAST data archive (Crowe+ in prep.; Zhang+ in prep.)

SOMA Imaging: FORCAST image fitting (Yang+ in prep.; Mifsut Benet+ in prep.)

SOMA Radio: VLA/ATCA all sources observed (Rosero et al. 2019; Sequeira-Murillo+)

SOMA mm/submm: ALMA (Band 6) - hi-res 5 observed (Zhang et al. 2019a, b, 2022; Law et al. 2022) - med-res 8 observed (Zhang et al. 2019c) - low-res ~15 observed Chemistry - SMA, IRAM30m, GBT, Yebes

SOMA POL: ~few sources observed with HAWC+; JCMT-POL2 (Pattle, Law+)

SOMA FIFI-LS: 17 sources observed - Atomic Outflows [OI] (Oakey, Reyes Rosa, Yang+)

SOMA NIR: HST/WFC3 18 observed (Fedriani et al. 2019 for G35.2) LBT/LUCI ~20+ observed; remainder in progress (Fedriani+ in prep.)

"Crowded" Massive Star Formation

AFGL 5180, Crowe, Fedriani et al. 2024

SOMA Survey: Conclusions and Outlook

- controlled by these cavities.
- RT modeling (SEDs, images) and astrochemical modeling.

>100 sources analyzed to date. Follow-up in progress with ALMA, VLA, HST...

• If massive stars form by (turbulent) core accretion, we expect ordered outflow cavities. In high density regions, cores predicted to have high mass surface densities so even ~40µm emission

•The SOMA survey is using SOFIA-FORCAST to image >50 massive & intermediate-mass protostars in a range of environments and evolutionary stages, to test formation theories, via

