SOFIA INSTRUMENTS HAWC+

B-G Andersson

(with - lots of - help from Enrique)

Outline

- Polarimetry basics
- Polarization mechanisms
- The HAWC+ instrument
- Preparing HAWC+ observations

Polarimetry Basics

- Polarization is a [pseudo] vector
 Degenerate on 180° rotation
- Does not add and subtract as scalars $(p_1+p_2\neq |p_1|+|p_2|)$
- Add and subtract in Stokes parameter space, I, Q, U, V
- HAWC+ is only sensitive to linear polarization, so "assume" V=0
- For [partially] linear polarized light

Q=PI $cos(2\gamma)$; q=Q/I=p $cos(2\gamma)$

U=PI sin(2 γ); q=Q/I=p sin(2 γ)

 $p = sqrt(q^2 + u^2)$

 $\gamma = 1/2 \arctan(u/q)$

- Because p=sqrt(q²+u²), p is positive definite and therefore $\sigma_{\rm p}$ is biased at small S/N

Polarimetry Basics II

- Observationally q & u are determined from measurements at 4 angles - or more! At the cost of add. overhead, avoid systematics
- For an arbitrary angle α of the instrument (for HWP)

 $q'=I(\alpha)-I(\alpha+90)/I(\alpha)+I(\alpha+90)$

 $u' = I(\alpha + 45) - I(\alpha + 135) / I(\alpha + 45) + I(\alpha + 135)$

- Need to calibrate orientation of instrument (vs. sky), efficiency of the instrument (100%pol ->X% measured) and the instrumental polarization
 - Efficiency is measured in the lab. >85% in all band
 - Position angle is measured E of N, calibrated in lab
 - Mounting is reproducible so calibrate in lab
 - Keep track of parallactic angle
 - Instrumental polarization is measured via sky-dips and on un-polarized sources
- All these corrections are incorporated in the pipeline processing, but the user should know about them

Polarization Mechanisms

- There are [at least] three polarization mechanisms that should be considered when analyzing HAWC+ polarimetry
- Emission from aligned grains
- Synchrotron radiation
- Scattering (off of dust)

Other effects (aligned atoms, Zeeman, etc.) are possible but because HAWC+ is broad-band and not sensitive to circular polarization, not discussed here.

For grain alignment see

Andersson, Lazarian & Vaillancourt, 2015, ARA&A, 53, 501

Polarization by aligned dust grains

Dichroic Extinction Polarization

Polarization by Dichroic Emission

- Alignment is due to the interaction of the dust grains with radiation.
 - Requires $\lambda < 2a$
 - For paramagnetic grains (Silicates) the alignment is [usually] along the magnetic field (B-RAT)
 - For very strong, anisotropic, radiation the alignment can become along the radiation field direction (k-RAT)
- Disalignment (for "classical" grains) dominated by gas-grain collisions

Polarization by aligned dust grains

- Alignment is due to the interaction of the dust grains with radiation. - $\lambda < 2a$
- Alignment more efficient in strong radiation (and not uniform along a line of sight) – e.g. next to embedded YSOs
- For dense, starless cores, the alignment should fail beyond A_V≈20 mag (Alves et al. 2013; Jones et al 2014; Andersson et al. 2015)
- Carbon grains are not expected to be aligned with the magnetic field

Note that since O/NIR polarization is due to extinction, but FIR polarization is due to emission

 p_{ext} =- τp_{emit}

(where the minus sign, by convention, signifies a 90° rotation) For optically thin emission, $I=T(1-e^{-\tau})\approx T\tau$ and, if T=constant,

p_{ext}~-Ip_{emit}

So the polarized flux (at FIR) is equivalent to the polarization at O/NIR

Polarization by aligned HAWC+

- HAWC+ covers the peak of the [large] dust emission
- The HAWC+ "Polarization spectrum" could tell us about source structures and dust composition
- Vaillancourt et al (2008) & Draine & Fraisse (2009)
- But Fissel et al. don't see it need more data at <200mm

Polarization From Synchrotron Radiation

- From relativistic electrons orbiting magnetic field lines
- Spectrum falls with frequency. To be a concern in the FIR, electrons have to be very high energy

The polarization and polarized flux depend on the opacity of the source in a complicated way

- Proposed for AGNs due to small-scale (pc-scale) jets
- Highly intrinsically polarized

Polarization From Scattering

- Scattering off of polarizable dust will give rise to "Rayleigh scattering"
- In the [diffuse] ISM the grains range from (<) 0.010 0.3 μm
 - Only affects the blue (UV) polarization (e.g. Matsumura et al. 2011; Andersson et al. 2013)
- In regions where significant grain growth occurs next to a bright source "Rayleigh scattering" can affect much longer wavelengths
- Looney and collaborators (Kataoka et al. 2017; Stephens et al. 2017) have shown that mm-wave polarimetry can be due to dust scattering

Polarization From Scattering - The case of HL Tau (Looney et al.)

Kataoka et al. (2017); Stephens et al. (2017)

Imaging and Polarimetry HAWC+

Imaging and polarimetry map of W3 at 89 μm (Preliminary data)

USR/

HAWC+ 10^{8} U.S. PI Instrument U.S. Facility Instrument German PI Instrument 107 -German Facility Instrument GREAT EXES HIRMES ▲ FIFI-LS FLITECAM with grisms

HAWC+

- HAWC+ is a Half-Wave Plate (HWP) and wire-grid polarimeter
 - HWP are bifringent elements that rotate the plane of polarization of the incoming light
- Two simultaneous orthogonal linear polarizations sensed (R & T)
 - Rotating the HWP allows the four required angles to be probed (α = 0, 22.5, 45 & 67.5)
 - This has to be done fast enough that variations in the background doesn't overwhelm the polarization signal
 - Therefore (currently) polarization measurements can only be done in chop-nod mode
- The detectors are superconducting transition-edge sensor (TES) thermometers on membranes with a wide-band absorber coating.
- Cooled to an operating temperature of ~0.2 K in flight, by an Adiabatic Demagnetization Refrigerator (ADR)
 - The hold time of the HAWC+ ADR has now been extended to >10h

HAWC+ Specifications

- PI: C. Darren Dowell (JPL)
- Imaging and Polarimetric capabilities

 a 63 μm observations saturate on background flux (too wide a filter) – not offered in Cy 7

USRA

HAWC+ Field Of View

3 detectors are available: R0, R1 and T0
Imaging and Polarimetric capabilities

USRA

HAWC+ Sensitivities

- HAWC+ total power is less sensitive than PACS, considering that HAWC+ bands are narrower than HERSCHEL's.
- On the other side, the HAWC+ FOV is wider than PACS at long wavelengths. Note that the FOV of Band E (214 µm) is partially vignetted.

HAWC+ Instrumental Polarization

- HAWC+ instrumental polarization (IP) has been measure and is small and stable
- The IP is mainly cause by the tertiary mirror of SOFIA with the position angle of polarization perpendicular to the tertiary mirror direction.

	Band A	Band C	Band D	Band E	σ(q,u)
q	-0.0154	-0.0151	0.0028	-0.0129	<0.003
U	-0.0030	0.0090	0.0191	0.0111	<0.003
IP [%]	1.6	1.8	1.9	1.7	

- IP reproducibility is ~0.3-0.8%
- IP variations over the FOV is also ~0.3-0.8%
- Hence: A (calibrated) measured polarization of <0.8% is consistent with an un-polarized source
- Note that the formal uncertainties of the IP (above) are less than the variations, so unlikely that we can improve IP subtraction significantly

JSR/

HAWC+ PSF

HAWC+/SOFIA is diffraction limited at all wavelengths.

_

HAWC+ Lissajous & Rasters

- Polarimetry can (currently) only be done in Chop-nod mode.
- Total Intensity scan mapping is used with two available patterns:
 - <u>Lissajous</u> for small fields.
 Use this mode for fields
 comparable to the FOV of HAWC+

- <u>Rasters</u> to map large fields.

- In both cases, two scans are required to avoid stripping.
- To obtain an absolute flux calibration, part of the map should include regions with no extended flux.

HAWC+ Lissajous

USRA

DLR

CDSI

HAWC+ Raster

HAWC+ Polarimetry

1) Chop-nod:

- Nod parallel to chop, symmetric only
- Chop-throw <8 arcmin, Chop-freq. 5-20 Hz
- 2) Half-WavePlate (HWP) rotation:
 - 4 HWP positions: 0°, 45°, 22.5° and 67.5°
 - Chop-nod at each HWP angle
- 3) Dithering:
 - 4 dither positions within the FOV

Repeat chop-nod and HWP rotation at each dither position

- 4) Mosaics:
 - Steps 1 to 3 are repeated for a new sky position
 - Overlap by ~5 pixel
 - Account for rectangular array and no K-mirror

HAWC+ Dithering

Bad and missing pixels in the detector of HAWC+ require dithering to have images without holes. Band E (214 μ m): Vertical vignetting on the left and right of the array. Usable FOV ~2'x6'.

Band A

Band E vignetting

USRA

Preparing HAWC+ observations

- Key instruments/observation parameters:
- 1) Expected Total flux at desired wavelength
 - [use Herschel or SED modeling]
- 2) Expected degree of polarization at desired wavelength
 - [use SED modeling or polarization models]
- 3) Expected polarization accuracy.
 - It depends on your scientific goals
 - Instrumental polarization puts a floor at p≈0.8%
- 4) Establish OFF/Chop positions/Chop .
 - 480" max Chop through
 - Polarized flux is what count
- 5) Go to ETC and estimate the observing time given your requirements.
- 6) No K-mirror mosaics must be "robust"
- 7) Use USPOT to establish availability of guide stars

HAWC+

- HAWC+ is a imaging polarimeter
 HWP + Wire grid
 TES bolometers cooled to 0.2K by ADR
- Covers 53 214µm
- Beam sizes 4.7-19"; FOV: 1.3'x1.7' 4.0'x6.1'
- Polarimetry done in Chop-Nod mode
- Photometry (imaging) more efficiently done in scan mode
 Scan-map mode polarimetry is under development

